Three-Dimensional Force Field Spectroscopy

Author(s):  
Alexander Schwarz
2021 ◽  
Vol 33 (3) ◽  
pp. 479-487
Author(s):  
Wei-wen Zhao ◽  
Chun-hui Ma ◽  
De-cheng Wan ◽  
Yi-qian Wang

2009 ◽  
Vol 20 (26) ◽  
pp. 264004 ◽  
Author(s):  
D-A Braun ◽  
D Weiner ◽  
B Such ◽  
H Fuchs ◽  
A Schirmeisen

2019 ◽  
Author(s):  
Martin Lepsik ◽  
Roman Sommer ◽  
Sakonwan Kuhaudomlarp ◽  
Mickaёl Lelimousin ◽  
Emanuele Paci ◽  
...  

ABSTRACTPathogenic micro-organisms utilize protein receptors in adhesion to host tissues, a process that in some cases relies on the interaction between lectin and human glycoconjugates. Oligosaccharide epitopes are recognized through their three-dimensional structure and their flexibility is a key issue in specificity. In this paper, we analyse by X-ray crystallography the structures of the lectin LecB from two strains of Pseudomonas aeruginosa in complex with Lewis x oligosaccharide present on cell surfaces of human tissues. An unusual conformation of the glycan was observed in all binding sites with a non-canonical syn orientation of the N-acetyl group of N-acetyl-glucosamine. A PDB-wide search revealed that such an orientation occurs only in 2% of protein/carbohydrate complexes. Theoretical chemistry calculations showed that the observed conformation is unstable in solution but stabilised by the lectin. A reliable description of LecB/Lewis x complex by force field-based methods had proven as especially challenging due to the special feature of the binding site, two closely apposed Ca2+ ions which induce strong charge delocalisation. By comparing various force-field parametrisations, we design general protocols which will be useful in near future for designing carbohydrate-based ligands (glycodrugs) against other calcium-dependent protein receptors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
P. M. Pieczywek ◽  
W. Płaziński ◽  
A. Zdunek

Abstract In this study we present an alternative dissipative particle dynamics (DPD) parametrization strategy based on data extracted from the united-atom molecular simulations. The model of the homogalacturonan was designed to test the ability of the formation of large-scale structures via hydrogen bonding in water. The extraction of coarse-grained parameters from atomistic molecular dynamics was achieved by means of the proposed molecule aggregation algorithm based on an iterative nearest neighbour search. A novel approach to a time-scale calibration scheme based on matching the average velocities of coarse-grained particles enabled the DPD forcefield to reproduce essential structural features of homogalacturonan molecular chains. The successful application of the proposed parametrization method allowed for the reproduction of the shapes of radial distribution functions, particle velocities and diffusivity of the atomistic molecular dynamics model using DPD force field. The structure of polygalacturonic acid molecules was mapped into the DPD force field by means of the distance and angular bond characteristics, which closely matched the MD results. The resulting DPD trajectories showed that randomly dispersed homogalacturonan chains had a tendency to aggregate into highly organized 3D structures. The final structure resembled a three-dimensional network created by tightly associated homogalacturonan chains organized into thick fibres.


Author(s):  
André Schirmeisen ◽  
Hendrik Hölscher ◽  
Udo D. Schwarz

Sign in / Sign up

Export Citation Format

Share Document