Fast Response Magnetometer Using Ferromagnetic Resonance in Thin Films

1968 ◽  
Vol 39 (2) ◽  
pp. 220-222 ◽  
Author(s):  
L. J. Schwee ◽  
H. R. Irons
Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 119
Author(s):  
Anastasiia Tukmakova ◽  
Ivan Tkhorzhevskiy ◽  
Artyom Sedinin ◽  
Aleksei Asach ◽  
Anna Novotelnova ◽  
...  

Terahertz (THz) filters and detectors can find a wide application in such fields as: sensing, imaging, security systems, medicine, wireless connection, and detection of substances. Thermoelectric materials are promising basis for THz detectors’ development due to their sensitivity to the THz radiation, possibility to be heated under the THz radiation and produce voltage due to Seebeck effect. Thermoelectric thin films of Bi-Sb solid solutions are semimetals/semiconductors with the band gap comparable with THz energy and with high thermoelectric conversion efficiency at room temperature. Detecting film surface can be transformed into a periodic frequency selective surface (FSS) that can operate as a frequency filter and increases the absorption of THz radiation. We report for the first time about the simulation of THz detector based on thermoelectric Bi-Sb thin-filmed frequency-selective surface. We show that such structure can be both detector and frequency filter. Moreover, it was shown that FSS design increases not only a heating due to absorption but a temperature gradient in Bi-Sb film by two orders of magnitude in comparison with continuous films. Local temperature gradients can reach the values of the order of 100 K·mm−1. That opens new perspectives for thin-filmed thermoelectric detectors’ efficiency increase. Temperature difference formed due to THz radiation absorption can reach values on the order of 1 degree. Frequency-transient calculations show the power dependence of film temperature on time with characteristic saturation at times around several ms. That points to the perspective of reaching fast response times on such structures.


APL Materials ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 061105
Author(s):  
Lei Zhang ◽  
Dainan Zhang ◽  
Lichuan Jin ◽  
Bo Liu ◽  
Hao Meng ◽  
...  

2017 ◽  
Vol 1 (7) ◽  
Author(s):  
Irene Lucas ◽  
Pilar Jiménez-Cavero ◽  
J. M. Vila-Fungueiriño ◽  
Cesar Magén ◽  
Soraya Sangiao ◽  
...  

1992 ◽  
Vol 275 ◽  
Author(s):  
G. Cui ◽  
C. P. Beetz ◽  
B. A. Lincoln ◽  
P. S. Kirlin

ABSTRACTThe deposition of in-situ YBa2CU3O7-δ Superconducting films on polycrystalline diamond thin films has been demonstrated for the first time. Three different composite buffer layer systems have been explored for this purpose: (1) Diamond/Zr/YSZ/YBCO, (2) Diamond/Si3N4/YSZ/YBCO, and (3) Diamond/SiO2/YSZ/YBCO. The Zr was deposited by dc sputtering on the diamond films at 450 to 820 °C. The YSZ was deposited by reactive on-axis rf sputtering at 680 to 750 °C. The Si3N4 and SiO2 were also deposited by on-axis rf sputtering at 400 to 700 °C. YBCO films were grown on the buffer layers by off-axis rf sputtering at substrate temperatures between 690 °C and 750 °C. In all cases, the as-deposited YBCO films were superconducting above 77 K. This demonstration enables the fabrication of low heat capacity, fast response time bolometric IR detectors and paves the way for the use of HTSC on diamond for interconnect layers in multichip modules.


2021 ◽  
Vol 85 (9) ◽  
pp. 1012-1015
Author(s):  
S. A. Vyzulin ◽  
N. E. Syr’ev ◽  
G. V. Skomorokhov

2013 ◽  
Vol 40 ◽  
pp. 18001
Author(s):  
M. Belmeguenai ◽  
H. Tuzcuoglu ◽  
D. Berling ◽  
S.M. Chérif ◽  
Y. Roussigné ◽  
...  

2018 ◽  
Vol 766 ◽  
pp. 601-608 ◽  
Author(s):  
Hao Shen ◽  
Yinong Yin ◽  
Kun Tian ◽  
Karthikeyan Baskaran ◽  
Libing Duan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document