Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation

2006 ◽  
Vol 99 (5) ◽  
pp. 053511 ◽  
Author(s):  
F. Iacopi ◽  
Y. Travaly ◽  
B. Eyckens ◽  
C. Waldfried ◽  
T. Abell ◽  
...  
1970 ◽  
Vol 1 (2) ◽  
Author(s):  
H. Abdullah ◽  
S. Al Araimi and R. A. Siddiqui

Glass fiber reinforced plastics composite is extensively used as a structural material for pools, oil pipes and tanks because it has good corrosion resistance properties.  The effects of weathering on the mechanical properties of glass fiber reinforced plastics (GRP) in the Sultanate of Oman have been studied.  The tensile and three point bend specimens were exposed to outdoor conditions (open atmosphere) in sunlight and tested for various intervals of time.  It was observed that as the exposure time to sunlight, ultraviolet radiation and dust increases the mechanical properties of GRP materials decrease.  The effects of relative humidity (%RH) on the mechanical properties were also studied. It was found that as the relative humidity increased in the atmosphere during the exposure time, the tensile strength, flexural strength and modulus of elasticity are lowered. This work has revealed that the decrease in the mechanical properties of GRP under weathering conditions is subjected to atmospheric conditions such as humidity, temperature, ultraviolet radiation and pollutant.Key Words: Weathering, Glass-Fiber Reinforced Plastics, Degradation


ASAIO Journal ◽  
2015 ◽  
Vol 61 (6) ◽  
pp. 731-733 ◽  
Author(s):  
Annicka C. Evans ◽  
G. Andrew Wright ◽  
Sean P. McCandless ◽  
Sandi Stoker ◽  
Dylan Miller ◽  
...  

Author(s):  
Panjawat Kongsuwan ◽  
Hongliang Wang ◽  
Sinisa Vukelic ◽  
Y. Lawrence Yao

Femtosecond laser pulses were focused in the interior of a single fused silica piece. Proper use of optical and laser processing parameters generated structural rearrangement of the material through a thermal accumulation mechanism, which could be potentially used for the transmission welding process. The morphology of generated features was studied using differential interference contrast optical microscopy. In addition, the predictive capability of the morphology is developed via a finite element analysis. The change in mechanical properties was studied through employment of spatially resolved nanoindentation. The specimen was sectioned and nanoindents were applied at the cross section to examine mechanical responses of the laser-modified region. Fracture toughness measurements are carried out to investigate the effects of the laser treatment on strength of the glass.


2007 ◽  
Vol 106 (5) ◽  
pp. 3253-3258 ◽  
Author(s):  
Xue Feng Yao ◽  
Dong Liang Liu ◽  
Heisen Yang Yeh

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1287
Author(s):  
Sanjoy Datta ◽  
Radek Stocek ◽  
Kinsuk Naskar

Ultraviolet curing of elastomers is a special curing technique that has gained importance over the conventional chemical crosslinking method, because the former process is faster, and thus, time-saving. Usually, a suitable photoinitiator is required to initiate the process. Ultraviolet radiation of required frequency and intensity excites the photoinitiator which abstracts labile hydrogen atoms from the polymer with the generation of free radicals. These radicals result in crosslinking of elastomers via radical–radical coupling. In the process, some photodegradation may also take place. In the present work, a high vinyl (~50%) styrene–butadiene–styrene (SBS) block copolymer which is a thermoplastic elastomer was used as the base polymer. An attempt was made to see the effect of ultraviolet radiation on the mechanical properties of the block copolymer. The process variables were time of exposure and photoinitiator concentration. Mechanical properties like tensile strength, elongation at break, modulus at different elongations and hardness of the irradiated samples were studied and compared with those of unirradiated ones. In this S-B-S block copolymer, a relatively low exposure time and low photoinitiator concentration were effective in obtaining optimized mechanical properties. Infrared spectroscopy, contact angle and scanning electron microscopy were used to characterize the results obtained from mechanical measurements.


Sign in / Sign up

Export Citation Format

Share Document