UV-induced surface electrical conductivity jump of polymer nanocomposites

2008 ◽  
Vol 92 (20) ◽  
pp. 203113 ◽  
Author(s):  
Guang-Xin Chen ◽  
Masahiro Miyauchi ◽  
Hiroshi Shimizu
2004 ◽  
Vol 37 (24) ◽  
pp. 9048-9055 ◽  
Author(s):  
Fangming Du ◽  
Robert C. Scogna ◽  
Wei Zhou ◽  
Stijn Brand ◽  
John E. Fischer ◽  
...  

2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


NANO ◽  
2017 ◽  
Vol 12 (04) ◽  
pp. 1750045
Author(s):  
Jun-Xing Pan ◽  
Yu-Qi Guo ◽  
Yu-Fang Han ◽  
Min-Na Sun ◽  
Jin-Jun Zhang

Computer simulation is carried out for investigating the effect of nanoparticles on diblock copolymer morphology under cylindrical confinement. The phase diagrams of polymer nanocomposites with nanoparticle-block wetting strength and concentration of nanoparticles are obtained in different nanopores. In small diameter nanopore, there is almost no influence of nanoparticles on the diblock copolymer morphology because of the stronger confinement effect; in middle diameter nanopore, the system can self-assemble into various novel structures due to the interaction between confinement effect and nanoparticles effect; in large diameter nanopore, due to the stronger effect of nanoparticles, a disorder-order-disorder phase transition occurs with the wetting strength and concentration of nanoparticles increasing. This result can be useful in designing new nanocomposites with advanced electrical conductivity and/or mechanical strength.


2019 ◽  
Vol 66 (4) ◽  
pp. 520-526
Author(s):  
Fupeng Cheng ◽  
Jinglong Cui ◽  
Shuai Xu ◽  
Hongyu Wang ◽  
Pengchao Zhang ◽  
...  

Purpose The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs), a protective Nb-modified layer is formed onto stainless steel via the plasma surface diffusion alloying method. The effect of diffusion alloying time on electrochemical behavior and surface conductivity is evaluated. Design/methodology/approach In this work, the surface electrical conductivity and corrosion resistance of modified specimen are evaluated by the potentiodynamic and potentionstatic polarization tests. Moreover, the hydrophobicity is also investigated by contact angle measurement. Findings The Nb-modified 430 SS treated by 1.5 h (1.5Nb) presented a lower passivation current density, lower interfacial contact resistance and a higher hydrophobicity than other modified specimens. Moreover, the 1.5 Nb specimen presents a smoother surface than other modified specimens after potentionstatic polarization tests. Originality/value The effect of diffusion alloying time on electrochemical behavior, surface conductivity and hydrophobicity of modified specimen is evaluated. The probable anti-corrosion mechanism of Nb-modified specimen in simulated acid PEMFC cathode environment is presented.


Author(s):  
Gary D. Seidel ◽  
Kelli L. Boehringer ◽  
Dimitris C. Lagoudas

In the present work, computational micromechanics techniques are applied towards predicting the effective electrical conductivities of polymer nanocomposites containing aligned bundles of SWCNTs at wide range of volume fractions. Periodic arrangements of well-dispersed and clustered/bundled SWCNTs are studied using the commercially available finite element software COMSOL Multiphysics 3.4. The volume averaged electric field and electric flux obtained are used to calculate the effective electrical conductivity of nanocomposites in both cases, therefore indicating the influence of clustering on the effective electrical conductivity. In addition, the influence of the presence of an interphase region on the effective electrical conductivity is considered in a parametric study in terms of both interphase thickness and conductivity for both the well dispersed case and for the clustered arrangements. Comparing the well-dispersed case with an interphase layer to the same arrangement without the interphase layer allows for the assessment of the influence of the interphase layer on the effective electrical conductivities, while similar comparisons for the clustered arrangements yield information about the combined effects of clustering and interphase regions. Initial results indicate that there is very little influence of the interphase layer on the effective conductivity prior to what is identified as the interphase percolation concentration, and that there is an appreciable combined effect of clustering in the presence of interphase regions which leads to increases in conductivity larger than the sum of the two effects independently.


Author(s):  
LUCREZIA PALUMMO ◽  
GIULIO AIELLI ◽  
RINALDO SANTONICO ◽  
JOHNNY MIO BERTOLO ◽  
ANDREA BEARZOTTI

Sign in / Sign up

Export Citation Format

Share Document