Electrical Conductivity and Linear Rheology of Multi-Walled Carbon Nanotube/Acrylonitrile Butadiene Styrene Polymer Nanocomposites Prepared By Melt Mixing and Solution Casting

2020 ◽  
Vol MA2020-01 (30) ◽  
pp. 2281-2281
Author(s):  
Takafumi Kobayashi ◽  
Shunsuke Takeda ◽  
Ajit Khosla ◽  
Hidemitsu Furukawa ◽  
Masataka Sugimoto ◽  
...  
Polymer ◽  
2004 ◽  
Vol 45 (3) ◽  
pp. 739-748 ◽  
Author(s):  
Olaf Meincke ◽  
Dirk Kaempfer ◽  
Hans Weickmann ◽  
Christian Friedrich ◽  
Marc Vathauer ◽  
...  

2018 ◽  
Vol 53 (10) ◽  
pp. 1291-1298 ◽  
Author(s):  
Hee Young Lee ◽  
Heidy Cruz ◽  
Younggon Son

In this work, we present the effect of incorporation of polyester on the electrical properties of injection-molded polycarbonate/multi-walled carbon nanotube nanocomposites. The study was conducted by melt-mixing polycarbonate, multi-walled carbon nanotube, and three types of polyesters: polybutylene terephthalate, polyethylene terephthalate, and liquid crystal polymer. It was found that the volume resistivities of injection-molded composites containing 2 phr polyester significantly decreased because of the transesterification reaction between the polycarbonate and polyester. The resulting polycarbonate-polyester random block copolymer kept the conductive networks intact because of the preferential affinity of multi-walled carbon nanotubes with polyester. This study showed that incorporating polyester with polycarbonate–multi-walled carbon nanotube increases the electrical conductivity of injection-molded polycarbonate/multi-walled carbon nanotube nanocomposites to a great extent.


2021 ◽  
pp. 108128652110214
Author(s):  
Xiaodong Xia ◽  
George J. Weng

Recent experiments have revealed two distinct percolation phenomena in carbon nanotube (CNT)/polymer nanocomposites: one is associated with the electrical conductivity and the other is with the electromagnetic interference (EMI) shielding. At present, however, no theories seem to exist that can simultaneously predict their percolation thresholds and the associated conductivity and EMI curves. In this work, we present an effective-medium theory with electrical and magnetic interface effects to calculate the overall conductivity of a generally agglomerated nanocomposite and invoke a solution to Maxwell’s equations to calculate the EMI shielding effectiveness. In this process, two complex quantities, the complex electrical conductivity and complex magnetic permeability, are adopted as the homogenization parameters, and a two-scale model with CNT-rich and CNT-poor regions is utilized to depict the progressive formation of CNT agglomeration. We demonstrated that there is indeed a clear existence of two separate percolative behaviors and showed that, consistent with the experimental data of poly-L-lactic acid (PLLA)/multi-walled carbon nanotube (MWCNT) nanocomposites, the electrical percolation threshold is lower than the EMI shielding percolation threshold. The predicted conductivity and EMI shielding curves are also in close agreement with experimental data. We further disclosed that the percolative behavior of EMI shielding in the overall CNT/polymer nanocomposite can be illustrated by the establishment of connective filler networks in the CNT-poor region. It is believed that the present research can provide directions for the design of CNT/polymer nanocomposites in the EMI shielding components.


Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


Sign in / Sign up

Export Citation Format

Share Document