Spontaneous decrease of high surface electrical conductivity in diamond exposed to atmospheric air

Author(s):  
S KULESZA
Author(s):  
Marianne Kilbride ◽  
Richard A Pethrick

Enhancement of the surface electrical conductivity is desirable in a number of applications where composite structures are exposed to environments with high electrical activity. A high surface conductivity is desirable on aircraft that can be subject to lightning strikes or in manufacturing environments where static build up can produce safety issues. This article considers the addition of various conducting fillers to a thermoplastic to enhance the conductivity of the polymer matrix. The thermoplastic is one which is conventionally used to toughen epoxy resin composites. It was found that enhancement of the resin matrix depends on the filler, method of processing and subsequent thermal treatment. Conducting data are presented on the blends containing carbon nanotubes, nanographite and carbon black in various proportions and doped and undoped with additional conducting salts. The latter have been added to the resin so as to enhance conduction between the filler particles. While the levels of conductivity are significantly lower than those observed with a pure metal skin, values are achieved, which would allow discharge of electricity within relatively short periods of time.


2019 ◽  
Author(s):  
Patricia Scheurle ◽  
Andre Mähringer ◽  
Andreas Jakowetz ◽  
Pouya Hosseini ◽  
Alexander Richter ◽  
...  

Recently, a small group of metal-organic frameworks (MOFs) has been discovered featuring substantial charge transport properties and electrical conductivity, hence promising to broaden the scope of potential MOF applications in fields such as batteries, fuel cells and supercapacitors. In combination with light emission, electroactive MOFs are intriguing candidates for chemical sensing and optoelectronic applications. Here, we incorporated anthracene-based building blocks into the MOF-74 topology with five different divalent metal ions, that is, Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, resulting in a series of highly crystalline MOFs, coined ANMOF-74(M). This series of MOFs features substantial photoluminescence, with ANMOF-74(Zn) emitting across the whole visible spectrum. The materials moreover combine this photoluminescence with high surface areas and electrical conductivity. Compared to the original MOF-74 materials constructed from 2,5-dihydroxy terephthalic acid and the same metal ions Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, we observed a conductivity enhancement of up to six orders of magnitude. Our results point towards the importance of building block design and the careful choice of the embedded MOF topology for obtaining materials with desired properties such as photoluminescence and electrical conductivity.


2016 ◽  
Vol 40 (3) ◽  
pp. 2655-2660 ◽  
Author(s):  
Emma Oakton ◽  
Jérémy Tillier ◽  
Georges Siddiqi ◽  
Zlatko Mickovic ◽  
Olha Sereda ◽  
...  

High surface area Nb and Sb-doped tin oxides are prepared by co-precipitation. The differences in conductivity are rationalised using HT-XRD, SSNMR and Nb K-edge XANES characterisation.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20949-20955 ◽  
Author(s):  
Patricia I. Scheurle ◽  
Andre Mähringer ◽  
Andreas C. Jakowetz ◽  
Pouya Hosseini ◽  
Alexander F. Richter ◽  
...  

A novel highly crystalline MOF-74 series consisting of an anthracene-based building block and five different divalent metal ions is presented. The MOFs combine photoluminescence with high surface areas and electrical conductivity.


2019 ◽  
Vol 66 (4) ◽  
pp. 520-526
Author(s):  
Fupeng Cheng ◽  
Jinglong Cui ◽  
Shuai Xu ◽  
Hongyu Wang ◽  
Pengchao Zhang ◽  
...  

Purpose The purpose of this paper is to improve the surface electrical conductivity and corrosion resistance of AISI 430 stainless steel (430 SS) as bipolar plates for proton exchange membrane fuel cells (PEMFCs), a protective Nb-modified layer is formed onto stainless steel via the plasma surface diffusion alloying method. The effect of diffusion alloying time on electrochemical behavior and surface conductivity is evaluated. Design/methodology/approach In this work, the surface electrical conductivity and corrosion resistance of modified specimen are evaluated by the potentiodynamic and potentionstatic polarization tests. Moreover, the hydrophobicity is also investigated by contact angle measurement. Findings The Nb-modified 430 SS treated by 1.5 h (1.5Nb) presented a lower passivation current density, lower interfacial contact resistance and a higher hydrophobicity than other modified specimens. Moreover, the 1.5 Nb specimen presents a smoother surface than other modified specimens after potentionstatic polarization tests. Originality/value The effect of diffusion alloying time on electrochemical behavior, surface conductivity and hydrophobicity of modified specimen is evaluated. The probable anti-corrosion mechanism of Nb-modified specimen in simulated acid PEMFC cathode environment is presented.


Author(s):  
LUCREZIA PALUMMO ◽  
GIULIO AIELLI ◽  
RINALDO SANTONICO ◽  
JOHNNY MIO BERTOLO ◽  
ANDREA BEARZOTTI

Sign in / Sign up

Export Citation Format

Share Document