Role of the buffer layer thickness on the formation of basal plane stacking faults in a-plane GaN epitaxy on r-sapphire

2008 ◽  
Vol 93 (1) ◽  
pp. 011901 ◽  
Author(s):  
Z. H. Wu ◽  
A. M. Fischer ◽  
F. A. Ponce ◽  
T. Yokogawa ◽  
S. Yoshida ◽  
...  
1999 ◽  
Vol 595 ◽  
Author(s):  
Nikhil Sharma ◽  
David Tricker ◽  
Vicki Keast ◽  
Stewart Hooper ◽  
Jon Heffernan ◽  
...  

AbstractAlthough GaN has been grown mainly by metal organic chemical vapour deposition (MOCVD), molecular beam epitaxy (MBE) offers the advantages of lower growth temperatures and a more flexible control over doping elements and their concentrations [1]. We are growing GaN by MBE on sapphire substrates, using a GaN buffer layer to reduce the misfit strain, thus improving the structural quality of the epilayer. The quality of the GaN epilayers (in terms of their photoluminescence, mobility and structure) has been investigated as a function of the buffer layer thickness and annealing time.The investigation showed that increasing the buffer layer thickness improved the mobility of the material because the defect density in the GaN epilayer decreased. Optical characterisation showed that the ratio of the donor band exciton (DBE) peak (3.47eV) to the structural peak (3.27eV) in the photoluminescence spectrum, measured at 10K, increased with decreasing defect density. The unwanted structural peak can be considered to originate from a shallow donor to a shallow acceptor transition, which is clearly related to the structural defects in GaN. Thus by increasing the buffer layer thickness and annealing time the structural quality, mobility and photoluminescence improves in the GaN epilayers.Structural characterisation by transmission electron microscopy (TEM) showed that the observed increase in the DBE to structural peak ratio in the photoluminescence spectra could be correlated with a decrease in the density of stacking faults in the GaN epilayers. The detailed structure of these stacking faults was investigated by dark field and high resolution TEM. Their effect on the electrical and optical behaviour of GaN may be assessed by determining the local change in the dielectric function in the vicinity of individual stacking faults.


Langmuir ◽  
2017 ◽  
Vol 33 (19) ◽  
pp. 4654-4665 ◽  
Author(s):  
Sk. Ziaur Rahaman ◽  
Yu-De Lin ◽  
Heng-Yuan Lee ◽  
Yu-Sheng Chen ◽  
Pang-Shiu Chen ◽  
...  

2011 ◽  
Vol 11 (2) ◽  
pp. 1409-1412 ◽  
Author(s):  
Ah Ra Kim ◽  
Ju-Young Lee ◽  
Bo Ra Jang ◽  
Hong Seung Kim ◽  
Young Ji Cho ◽  
...  

2010 ◽  
Vol 19 (3) ◽  
pp. 036801 ◽  
Author(s):  
Wu Yu-Xin ◽  
Zhu Jian-Jun ◽  
Chen Gui-Feng ◽  
Zhang Shu-Ming ◽  
Jiang De-Sheng ◽  
...  

1994 ◽  
Vol 339 ◽  
Author(s):  
T. J. Kistenmacher ◽  
S. A. Ecelberger ◽  
W. A. Bryden

ABSTRACTIntroduction of a buffer layer to facilitate heteroepitaxy in thin films of the Group IIIA nitrides has had a tremendous impact on growth morphology and electrical transport. While AIN- and self-seeded growth of GaN has captured the majority of attention, the use of AIN-buffered substrates for InN thin films has also had considerable success. Herein, the properties of InN thin films grown by reactive magnetron sputtering on AIN-buffered (00.1) sapphire and (111) silicon are presented and, in particular, the evolution of the structural and electrical transport properties as a function of buffer layer sputter time (corresponding to thicknesses from ∼50Å to ∼0.64 μm) described. Pertinent results include: (a) for the InN overlayer, structural coherence and homogeneous strain normal to the (00.1) growth plane are highly dependent on the thickness of the AIN-buffer layer; (b) the homogeneous strain in the AIN-buffer layer is virtually nonexistent from a thickness of 200Å (where a significant X-ray intensity for (00.2)AIN is observed); and (c) the n-type electrical mobility for films on AIN-nucleated (00.1) sapphire is independent of AIN-buffer layer thickness, owing to divergent variations in carrier concentration and film resistivity. These effects are in the main interpreted as arising from a competition between the lattice mismatch of the InN overlayer with the substrate and with the AIN-buffer layer.


2004 ◽  
Vol 262 (1-4) ◽  
pp. 456-460 ◽  
Author(s):  
Yuantao Zhang ◽  
Guotong Du ◽  
Boyang Liu ◽  
HuiChao Zhu ◽  
Tianpeng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document