Gamma-Ray Bursts: Afterglow and Prompt Emission Models

2008 ◽  
Author(s):  
Bing Zhang ◽  
Yong-Feng Huang ◽  
Zi-Gao Dai ◽  
Bing Zhang
2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


2019 ◽  
Vol 627 ◽  
pp. A105 ◽  
Author(s):  
J. M. Burgess ◽  
M. Kole ◽  
F. Berlato ◽  
J. Greiner ◽  
G. Vianello ◽  
...  

Context. Simultaneousγ-ray measurements ofγ-ray burst spectra and polarization offer a unique way to determine the underlying emission mechanism(s) in these objects, as well as probing the particle acceleration mechanism(s) that lead to the observedγ-ray emission.Aims. We examine the jointly observed data from POLAR andFermi-GBM of GRB 170114A to determine its spectral and polarization properties, and seek to understand the emission processes that generate these observations. We aim to develop an extensible and statistically sound framework for these types of measurements applicable to other instruments.Methods. We leveraged the existing3MLanalysis framework to develop a new analysis pipeline for simultaneously modeling the spectral and polarization data. We derived the proper Poisson likelihood forγ-ray polarization measurements in the presence of background. The developed framework is publicly available for similar measurements with otherγ-ray polarimeters. The data are analyzed within a Bayesian probabilistic context and the spectral data from both instruments are simultaneously modeled with a physical, numerical synchrotron code.Results. The spectral modeling of the data is consistent with a synchrotron photon model as has been found in a majority of similarly analyzed single-pulse gamma-ray bursts. The polarization results reveal a slight trend of growing polarization in time reaching values of ∼30% at the temporal peak of the emission. We also observed that the polarization angle evolves with time throughout the emission. These results suggest a synchrotron origin of the emission but further observations of many GRBs are required to verify these evolutionary trends. Furthermore, we encourage the development of time-resolved polarization models for the prompt emission of gamma-ray bursts as the current models are not predictive enough to enable a full modeling of our current data.


2016 ◽  
Vol 12 (S324) ◽  
pp. 54-61
Author(s):  
Diego Götz ◽  
Stefano Covino

AbstractWe review the current observational and theoretical status of the polarization measurements of Gamma-ray Bursts at all wavelengths. Gamma-Ray Bursts are thought to be produced by an ultra-relativistic jet, possibly powered by a black hole. One of the most important open point is the composition of the jet: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). The polarization properties are expected to help disentangling main energy carrier. The prompt emission and afterglow polarization are also a powerful diagnostic of the jet geometry.


2013 ◽  
pp. 121-150 ◽  
Author(s):  
Tsvi Piran ◽  
Re'em Sari ◽  
Robert Mochkovitch

2019 ◽  
Vol 625 ◽  
pp. A60 ◽  
Author(s):  
M. E. Ravasio ◽  
G. Ghirlanda ◽  
L. Nava ◽  
G. Ghisellini

The long-lasting tension between the observed spectra of gamma-ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence of incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV, and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in eight out of ten long GRBs there is compelling evidence of a low-energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively −2/3 and −3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break, but the low-energy spectral slope is consistent with −2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B′∼10 G in the comoving frame), at odd with expectations.


Author(s):  
Asaf Pe'er ◽  
Peter Mészáros ◽  
Martin J Rees

A thermal radiative component is likely to accompany the first stages of the prompt emission of gamma-ray bursts (GRBs) and X-ray flashes. We analyse the effect of such a component on the observable spectrum, assuming that the observable effects are due to a dissipation process occurring below or near the thermal photosphere. For comparable energy densities in the thermal and leptonic components, the dominant emission mechanism is Compton scattering. This leads to a nearly flat energy spectrum ( νF ν ∝ ν 0 ) above the thermal peak at approximately 10–100 keV and below 10–100 MeV, for a wide range of optical depths 0.03≲ τ ≲100, regardless of the details of the dissipation mechanism or the strength of the magnetic field. For higher values of the optical depth, a Wien peak is formed at 100 keV to 1 MeV. In particular, these results are applicable to the internal shock model of GRBs, as well as to slow dissipation models, e.g. as might be expected from reconnection, if the dissipation occurs at a sub-photospheric radii. We conclude that dissipation near the thermal photosphere can naturally explain (i) clustering of the peak energy at sub-MeV energies at early times, (ii) steep slopes observed at low energies, and (iii) a flat spectrum above 10 keV at late times. Our model thus provides an alternative scenario to the optically thin synchrotron–synchrotron self-Compton model.


2004 ◽  
Vol 19 (15) ◽  
pp. 2385-2472 ◽  
Author(s):  
BING ZHANG ◽  
PETER MÉSZÁROS

The cosmological gamma-ray burst (GRB) phenomenon is reviewed. The broad observational facts and empirical phenomenological relations of the GRB prompt emission and afterglow are outlined. A well-tested, successful fireball shock model is introduced in a pedagogical manner. Several important uncertainties in the current understanding of the phenomenon are reviewed, and prospects of how future experiments and extensive observational and theoretical efforts may address these problems are discussed.


2011 ◽  
Vol 20 (10) ◽  
pp. 1969-1973 ◽  
Author(s):  
RAFFAELLA MARGUTTI ◽  
CRISTIANO GUIDORZI ◽  
GUIDO CHINCARINI

We study the variability properties of the prompt emission of Gamma-Ray Bursts in the gamma-ray energy range. We use the power spectrum analysis in the time domain as developed by [Margutti, in preparation]; this technique is suitable to study the rms variations at different time scales. The timing analysis of 252 Swift light-curves in the 15–150 keV energy range reveals the existence of different variability classes. Moreover, after accounting for the cosmological time dilation, the distribution of the GRB characteristic variability time scales is found to cluster around 0.6–1 s we identify this time scale as a characteristic variability time scale of long GRBs in the source rest frame.


Sign in / Sign up

Export Citation Format

Share Document