VARIABILITY PROPERTIES OF SWIFT-BAT GAMMA-RAY BURSTS

2011 ◽  
Vol 20 (10) ◽  
pp. 1969-1973 ◽  
Author(s):  
RAFFAELLA MARGUTTI ◽  
CRISTIANO GUIDORZI ◽  
GUIDO CHINCARINI

We study the variability properties of the prompt emission of Gamma-Ray Bursts in the gamma-ray energy range. We use the power spectrum analysis in the time domain as developed by [Margutti, in preparation]; this technique is suitable to study the rms variations at different time scales. The timing analysis of 252 Swift light-curves in the 15–150 keV energy range reveals the existence of different variability classes. Moreover, after accounting for the cosmological time dilation, the distribution of the GRB characteristic variability time scales is found to cluster around 0.6–1 s we identify this time scale as a characteristic variability time scale of long GRBs in the source rest frame.

2003 ◽  
Vol 214 ◽  
pp. 339-340
Author(s):  
Rongfeng Shen ◽  
Liming Song

We determine the characteristic variability time scales for 410 bright long GRBs by locating the maximums of their Power Density Spectra (PDSs) defined and calculated in the time domain. The averaged characteristic variability time scale decreases with peak fluxe. This is consistent with the time dilation effect expected by cosmological origin of GRBs. The occurrence distribution of the characteristic variability time scale shows bimodality, which might be interpreted as that the long GRB sample is composed of two sub-classes with different intrinsic characteristic variability time scales.


2012 ◽  
Vol 8 (S288) ◽  
pp. 298-299
Author(s):  
Christian Vásconez ◽  
Nicolás Vásquez ◽  
Ericson López

AbstractAmong the several methods of classifying gamma-ray bursts (GRBs), the duration parameter has lead to the canonical classification of GRBs of long and shorts. However, the canonical classification of bursts has recently seen the emergence of a third type of GRB, which is present in a recent large burst sample from the Swift observatory. The high redshifts and the cosmological distances are directly confirmed for long bursts only, while for the short ones there is only indirect evidence for their cosmological origin. Cosmological objects should not only be redshifted in energy but also extended in time because of the expansion of the Universe. Meanwhile, an anticorrelation between the hardness and the duration is found for this subclass in contrast to the short and the long groups (Horvath et al. (2010)). Despite the differences among these three groups, it is not yet clear whether the third group represents a physically different phenomenon. In this scenario, we want to study the bimodal distribution of long bursts, focusing their temporal properties in the source location (burst frame). We have determined a temporal estimator in the cosmological rest-frame from a sample of 60 Swift's GRBs. If GRBs are at cosmological distances, then the burst profiles should be stretched in time due to cosmological time dilation by an amount proportional to the redshift, 1 + z (Chang (2001)). Complementary, we use the hardness ratio between the soft emission (15–50keV) and hard X-ray emission (50–150keV) in order to analyze the bimodal distribution of long bursts in the time-energy plane.


2008 ◽  
Vol 17 (09) ◽  
pp. 1351-1357
Author(s):  
L. HANLON ◽  
S. FOLEY ◽  
S. MCGLYNN ◽  
B. MCBREEN ◽  
J. FRENCH ◽  
...  

The ESA γ-ray astronomy satellite INTEGRAL localized 46 gamma-ray bursts between October 2002 and July 2007. Spectral lags have been determined from the burst time profiles for about half the sample, despite the extreme faintness of many INTEGRAL bursts. INTEGRAL's sensitivity across the energy range of interest for the prompt burst emission allows us to investigate the hypothesis of a low-luminosity, nearby population of bursts. The azimuthal distribution of double-scatter events in SPI's germanium detectors, in conjunction with a sophisticated spacecraft and instrument mass model, have been used to place limits on the percentage of polarization in the prompt emission of the brightest INTEGRAL burst, GRB 041219a.


2020 ◽  
Vol 499 (4) ◽  
pp. 5986-5992
Author(s):  
Nikhil Sarin ◽  
Paul D Lasky ◽  
Gregory Ashton

ABSTRACT The spin-down energy of millisecond magnetars has been invoked to explain X-ray afterglow observations of a significant fraction of short and long gamma-ray bursts. Here, we extend models previously introduced in the literature, incorporating radiative losses with the spin-down of a magnetar central engine through an arbitrary braking index. Combining this with a model for the tail of the prompt emission, we show that our model can better explain the data than millisecond-magnetar models without radiative losses or those that invoke spin-down solely through vacuum dipole radiation. We find that our model predicts a subset of X-ray flares seen in some gamma-ray bursts. We can further explain the diversity of X-ray plateaus by altering the radiative efficiency and measure the braking index of newly born millisecond magnetars. We measure the braking index of GRB061121 as $n=4.85^{+0.11}_{-0.15}$ suggesting the millisecond-magnetar born in this gamma-ray burst spins down predominantly through gravitational-wave emission.


2012 ◽  
Vol 8 (S290) ◽  
pp. 263-264
Author(s):  
Liang Li ◽  
En-Wei Liang ◽  
He Gao ◽  
Bing Zhang

AbstractWell-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from literature. We identify possible emission components based on our empirical fits and present statistical analysis for these components. We find that the flares are related to prompt emission, suggesting that they could have the same origin in different episodes. The shallow decay segment is not correlated with prompt gamma-rays. It likely signals a long-lasting injected wind from GRB central engines. Early after onset peak is closely related with prompt emission. The ambient medium density profile is likely n ∝ r−1. No correlation between the late re-brightening bump and prompt gamma-rays or the onset bump is found. They may be from another jet component.


Author(s):  
A. Kumar ◽  
S. B. Pandey ◽  
R. Gupta ◽  
A. Aryan ◽  
A. J. Castro-Tirado ◽  
...  

Newly installed 3.6m DOT at Nainital (Uttarakhand) is a novel facility for the time domain astronomy. Because of the longitudinal advantage of India, it could be used to study new transients reported by a global network of robotic telescopes. Observations with the 4K × 4K CCD Imager at the axial port of the 3.6m DOT will be very helpful in the near future towards understanding the different physical aspects of time-critical events, e.g., Gamma-ray bursts (GRBs), Supernovae, Gravitational wave candidates, etc. Using the Imager with broadband filters (Bessel UBVRI and SDSS ugriz), ~6.5' × 6.5' images could be obtained to attempt various science goals in synergy with other multi-band facilities. In this study, we present an analysis of unpublished R-band data of GRB 171205A/SN 2017iuk spanning between ~12 to 105 days since burst, that observed using the 3.6m DOT with 4K × 4K CCD Imager. In the R-band light curve, a bump appears to start from ~3 days, which shows the peak at ~15 days after the burst, clearly indicates photometric evidence of association of SN with GRB 171205A.


1995 ◽  
Vol 231 (1-2) ◽  
pp. 95-102 ◽  
Author(s):  
Jay P. Norris

2020 ◽  
Vol 492 (3) ◽  
pp. 3622-3630
Author(s):  
Lin Lan ◽  
Rui-Jingi Lu ◽  
Hou-Jun Lü ◽  
Jun Shen ◽  
Jared Rice ◽  
...  

ABSTRACT Short gamma-ray bursts (GRB) with extended emission (EE) that are composed of an initial short hard spike followed by a long-lasting EE are thought to comprise a sucategory of short GRBs. The narrow energy band available during the Swift era, combined with a lack of spectral information, prevented the discovery of the intrinsic properties of these events. In this paper, we perform a systematic search of short GRBs with EE using all available Fermi/GBM data. The search identified 26 GBM-detected short GRBs with EE that are similar to GRB 060614 observed by Swift/BAT. We focus on investigating the spectral and temporal properties of both the hard spike and the EE component of all 26 GRBs, and explore differences and possible correlations between them. We find that while the peak energy (Ep) of the hard spikes is slightly harder than that of the EE, their fluences are comparable. The harder Ep seems to correspond to a larger fluence and peak flux, with a large scatter for both the hard spike and the EE component. Moreover, the Ep of both the hard spike and the EE are compared with other short GRBs. Finally, we also compare the properties of GRB 170817A with those of short GRBs with EE and find no significant statistical differences between them. We find that GRB 170817A has the lowest Ep, probably because it is off-axis.


2019 ◽  
Vol 627 ◽  
pp. A105 ◽  
Author(s):  
J. M. Burgess ◽  
M. Kole ◽  
F. Berlato ◽  
J. Greiner ◽  
G. Vianello ◽  
...  

Context. Simultaneousγ-ray measurements ofγ-ray burst spectra and polarization offer a unique way to determine the underlying emission mechanism(s) in these objects, as well as probing the particle acceleration mechanism(s) that lead to the observedγ-ray emission.Aims. We examine the jointly observed data from POLAR andFermi-GBM of GRB 170114A to determine its spectral and polarization properties, and seek to understand the emission processes that generate these observations. We aim to develop an extensible and statistically sound framework for these types of measurements applicable to other instruments.Methods. We leveraged the existing3MLanalysis framework to develop a new analysis pipeline for simultaneously modeling the spectral and polarization data. We derived the proper Poisson likelihood forγ-ray polarization measurements in the presence of background. The developed framework is publicly available for similar measurements with otherγ-ray polarimeters. The data are analyzed within a Bayesian probabilistic context and the spectral data from both instruments are simultaneously modeled with a physical, numerical synchrotron code.Results. The spectral modeling of the data is consistent with a synchrotron photon model as has been found in a majority of similarly analyzed single-pulse gamma-ray bursts. The polarization results reveal a slight trend of growing polarization in time reaching values of ∼30% at the temporal peak of the emission. We also observed that the polarization angle evolves with time throughout the emission. These results suggest a synchrotron origin of the emission but further observations of many GRBs are required to verify these evolutionary trends. Furthermore, we encourage the development of time-resolved polarization models for the prompt emission of gamma-ray bursts as the current models are not predictive enough to enable a full modeling of our current data.


2016 ◽  
Vol 12 (S324) ◽  
pp. 54-61
Author(s):  
Diego Götz ◽  
Stefano Covino

AbstractWe review the current observational and theoretical status of the polarization measurements of Gamma-ray Bursts at all wavelengths. Gamma-Ray Bursts are thought to be produced by an ultra-relativistic jet, possibly powered by a black hole. One of the most important open point is the composition of the jet: the energy may be carried out from the central source either as kinetic energy (of baryons and/or pairs), or in electromagnetic form (Poynting flux). The polarization properties are expected to help disentangling main energy carrier. The prompt emission and afterglow polarization are also a powerful diagnostic of the jet geometry.


Sign in / Sign up

Export Citation Format

Share Document