Effect of Imposing Temperature Gradient in Stretch Forming Process for Ferritic Stainless Steel Sheets

Author(s):  
Takaaki Iguchi ◽  
Takumi Ujiro ◽  
F. Barlat ◽  
Y. H. Moon ◽  
M. G. Lee
Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1088
Author(s):  
Niklas Sommer ◽  
Igor Kryukov ◽  
Christian Wolf ◽  
Michael Wiegand ◽  
Martin Kahlmeyer ◽  
...  

In the present investigation, thin sheets of stabilized and unstabilized ferritic stainless steel were welded in butt joint configuration using irradiation of a 1070 nm fiber-laser. Using optical microscopy, the microstructural evolution upon alternating heat input was characterized. In addition to that, hardness and tensile tests were carried out on the specimens. Detailed focus was given to the intergranular corrosion properties, which were investigated on basis of the Strauss test with different times of exposure to the corrosive environment. Following these tests, the mechanical properties of the joints were characterized using tensile tests. A combination of the latter with an inspection by μ-CT analysis allows for the proposition of an intergranular corrosion rate with regard to the degradation of the joint strength.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1013
Author(s):  
Orlando Di Pietro ◽  
Giuseppe Napoli ◽  
Matteo Gaggiotti ◽  
Roberto Marini ◽  
Andrea Di Schino

A welded stainless steel tube is a component used in several industrial applications. Its manufacturing process needs to follow specific requirements based on reference standards. This calls for a predictive analysis able to face some critical issues affecting the forming process. In this paper, a model was adopted taking into account the tube geometrical parameters that was able to describe the deformation process and define the best industrial practices. In this paper, the effect of different process parameters and geometric constraints on ferritic stainless steel pipe deformation is studied by finite element method (FEM) simulations. The model sensitivity to the input parameters is reported in terms of stress and tube thinning. The feasibility of the simulated process is assessed through the comparison of Forming Limit Diagrams. The comparison between the calculated and experimental results proved this approach to be a useful tool in order to predict and properly design industrial deformation processes.


2005 ◽  
Vol 495-497 ◽  
pp. 363-368
Author(s):  
Soo Ho Park ◽  
Hyung Gu Kang ◽  
Yong Deuk Lee ◽  
Jae Chul Lee ◽  
Moo Young Huh

In order to investigate the effect of the reduction degree per rolling pass on the evolution of recrystallization textures and microstructures, the hot band of 17.5 Cr-1.1 Mo ferritic stainless steel sheets were cold rolled with lubrication according to two processing routes, by which different reduction degrees per pass were introduced. Rolling with a large number of passes led to the formation of fairly homogeneous rolling textures at all through-thickness positions. In contrast, cold rolling with large draughts resulted in pronounced texture gradients along the thickness direction. After recrystallization annealing, the texture maximum was obtained at {334}<483> in all samples regardless of the rolling routes and thickness layers. During subsequent annealing, recrystallization was observed to be faster in those grains with {111}<uvw> orientations, while it was retarded in grains having orientations close to {001}<110>.


2015 ◽  
Vol 639 ◽  
pp. 77-82
Author(s):  
Marc Tulke ◽  
Jennifer Watzke ◽  
Alexander Brosius ◽  
Michael Schomäcker

This paper shows the characterisation of a new composite material for architectural applications. The stainless steel and polyethylene laminate offers new possibilities in forming optically pleasing facade shapes. A selection of possible structures is presented as a result of extensive simulation studies. The presented structures are generated with a new pneumo-mechanical stretch forming process.


2012 ◽  
Vol 52 (3) ◽  
pp. 522-529 ◽  
Author(s):  
Kye-Man Lee ◽  
Moo-Young Huh ◽  
Sooho Park ◽  
Olaf Engler

2019 ◽  
pp. 1-8
Author(s):  
Juan Manuel Salgado-Lopez ◽  
José Luis Ojeda-Elizarrarás ◽  
José Trinidad Pérez-Quiroz ◽  
Hector Javier Vergara-Hernández

This work shows the influence of the normal anisotropy (“r” value) in the deep drawing of AISI 439 ferritic stainless steel sheets. In order to do so, quantitative chemical analysis, metallographic analysis, tensile mechanical properties, and the determination of the “r” value and the “n” value were carried out in two different AISI 439 steel sheets of two different suppliers. In recent years, this ferritic stainless steel has been applied in a deep drawing process of automotive components. In this way, it must be said that one of these ferritic stainless steel sheets cracked due to exhaustion of formability during deep drawing after few steps. On the other hand, the second ferritic stainless steel sheet showed neither cracking nor other type of defects. The results of the tests, which were carried out in this work, probed that the“r” value has a strong influence on the forming behaviour of ferritic steel during deep drawing. This information is very relevant because the AISI 439 standard does not consider the planar anisotropy or the strain hardening coefficient as relevant for designation, but this type of steel is being applied in many forming operations of different components.


Sign in / Sign up

Export Citation Format

Share Document