Lightweight Design in Architecture – Forming of Stainless Steel Composites for Modern Facades

2015 ◽  
Vol 639 ◽  
pp. 77-82
Author(s):  
Marc Tulke ◽  
Jennifer Watzke ◽  
Alexander Brosius ◽  
Michael Schomäcker

This paper shows the characterisation of a new composite material for architectural applications. The stainless steel and polyethylene laminate offers new possibilities in forming optically pleasing facade shapes. A selection of possible structures is presented as a result of extensive simulation studies. The presented structures are generated with a new pneumo-mechanical stretch forming process.

Author(s):  
J. L. Christian

The recent development of a new composite material with superior properties for structural applications is described. The development consisted of selection of matrix and filament materials, the fabrication of a number of composite panels qualification testing, evaluation of secondary fabrication methods and design application studies. It was demonstrated that the new composite material, aluminum-boron-stainless steel (A1-B-SS), could be made in various forms, shapes and sizes, that it possessed very desirable mechanical and physical properties, and that it could be satisfactorily cut, machined, formed and joined by a variety of methods. The potential weight savings (typically 30–45 percent) and other attractive properties make the A1-B-SS composite particularly promising for a number of structural applications.


2021 ◽  
Author(s):  
Benedikt Uhe ◽  
Clara-Maria Kuball ◽  
Marion Merklein ◽  
Gerson Meschut

The use of high-strength steel and aluminium is rising due to the intensified efforts being made in lightweight design, and self-piercing riveting is becoming increasingly important. Conventional rivets for self-piercing riveting differ in their geometry, the material used, the condition of the material and the coating. To shorten the manufacturing process, the use of stainless steel with high strain hardening as the rivet material represents a promising approach. This allows the coating of the rivets to be omitted due to the corrosion resistance of the material and, since the strength of the stainless steel is achieved by cold forming, heat treatment is no longer required. In addition, it is possible to adjust the local strength within the rivet. Because of that, the authors have elaborated a concept for using high nitrogen steel 1.3815 as the rivet material. The present investigation focusses on the joint strength in order to evaluate the capability of rivets in high nitrogen steel by comparison to conventional rivets made of treatable steel. Due to certain challenges in the forming process of the high nitrogen steel rivets, deviations result from the targeted rivet geometry. Mainly these deviations cause a lower joint strength with these rivets, which is, however, adequate. All in all, the capability of the new rivet is proven by the results of this investigation.


2020 ◽  
pp. 71-76
Author(s):  
M.A. Levantsevich ◽  
E.V. Pilipchuk ◽  
N.N Maksimchenko ◽  
L.S. Belevskiy ◽  
R.R. Dema

Experimental-statistical models of the process of forming composite chromium coatings by electrodeformation cladding with a flexible tool are developed, which allow to determine the parameters of the regimes for obtaining coatings of the required thickness and roughness. Keywords electrodeformation cladding, flexible tool, coating, composite material, experiment planning, noncompositional plan, thickness, roughness. [email protected]


1994 ◽  
Vol 27 (1) ◽  
pp. 33
Author(s):  
Richard Af Petersens ◽  
Ola Runnerstam

Optik ◽  
2021 ◽  
Vol 231 ◽  
pp. 166417 ◽  
Author(s):  
Md Tohidul Islam ◽  
Md Rafsun Jani ◽  
Kazi Md Shorowordi ◽  
Zameer Hoque ◽  
Ali Mucteba Gokcek ◽  
...  

2021 ◽  
Vol 1 ◽  
pp. 2047-2056
Author(s):  
Michael P. Voigt ◽  
Dominik Klaiber ◽  
Patrick Hommel ◽  
Daniel Roth ◽  
Hansgeorg Binz ◽  
...  

AbstractThe approach of functional integration has the potential to solve challenges regarding lightweight design and resource efficiency since the number of parts and therefore the weight and needed installation space can be reduced. One important step in developing integrative concepts is the pre-selection of suitable functions or components. Previous methods of pre-selection take various aspects into account. However, pre-selection based on these methods usually requires additional tables and forms, whose preparation and editing quickly becomes time-consuming. At the same time, most of the development engineers are working on CAD models. However, their use in the selection of suitable integration partners is not yet supported sufficiently. The development of more than 80 concepts on five different vehicles has shown that the consideration of geometric properties (position, orientation, size) is effective, as they can be identified with minimal analysis effort while working on CAD. In this paper a four-step procedure is presented how integration partners can be identified directly on the basis of CAD models. A following evaluation with development engineers in practice completes the research.


2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


Sign in / Sign up

Export Citation Format

Share Document