Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion

2010 ◽  
Vol 22 (7) ◽  
pp. 071702 ◽  
Author(s):  
E. Sanmiguel-Rojas ◽  
C. del Pino ◽  
C. Gutiérrez-Montes
2021 ◽  
Vol 6 (7) ◽  
Author(s):  
Boris Y. Rubinstein ◽  
Dana Zusmanovich ◽  
Zhenzhen Li ◽  
Alexander M. Leshansky

In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


1968 ◽  
Vol 34 (3) ◽  
pp. 595-608 ◽  
Author(s):  
M. J. Tunstall ◽  
J. K. Harvey

It has been found experimentally that the turbulent pipe flow through a mitred, right-angle bend produces a downstream secondary circulation which does not conform to the twin-circulatory flow usually to be found in pipe bends. The secondary flow is dominated by a single circulation about the axis in either a clockwise or an anticlockwise sense, between which it switches abruptly at a low, random frequency. The phenomenon is explained in terms of the asymmetry of the inner wall separation and the turbulent axial circulation generated in the upstream flow.


Sign in / Sign up

Export Citation Format

Share Document