The Effect of Rotor Blade Speed to the Best Efficiency Point of Single Stage Axial Flow Compressor

2010 ◽  
Author(s):  
Mohamad Firdaus Sukri ◽  
Faizil Wasbari ◽  
Shafizal Mat ◽  
M. A. Wahid ◽  
S. Samion ◽  
...  
2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Jichao Li ◽  
Juan Du ◽  
Mingzhen Li ◽  
Feng Lin ◽  
Hongwu Zhang ◽  
...  

The effects of water ingestion on the performance of an axial flow compressor are experimentally studied with and without endwall treatment. The background to the work is derived from the assessment of airworthiness for an aero-engine. The stability-enhancing effects with endwall treatments under rain ingestion are not previously known. Moreover, all the endwall treatments are designed under dry air conditions in the compressor. Water ingestion at 3% and 5% relative to the design mass flow proposed in the airworthiness standard are applied to initially investigate the effects on the performance under smooth casing (SC). Results show that the water ingestions are mainly located near the casing wall after they move through the rotor blade row. The pressure rise coefficient increases, efficiency declines, and torque increases under the proposed water ingestion. The increase of the inlet water increases the thickness of the water film downstream the rotor blade row and aggravates the adverse effects on the performances. Subsequently, three endwall treatments, namely circumferential grooves, axial slots, and hybrid slots–grooves, are tested with and without water ingestion. Compared with no water ingestion, the circumferential grooves basically have no resistance to the water ingestion. The axial slots best prevent the drop of the pressure rise coefficient induced by water ingestion, and hybrid slots–grooves are the second-best place owing to the contribution of the front axial slots. Therefore, the hybrid slots–grooves can not only extend the stall margin with less efficiency penalty compared with axial slots, but also prevent rain ingestion from worsening the compressor performance.


Author(s):  
Anand P. Darji ◽  
Dilipkumar Bhanudasji Alone ◽  
Chetan S. Mistry

A transonic axial flow compressor undergoes severe vibrations due to instabilities like stall and surge when it operates at lower mass flow rate in the absence of any control devices. In present study, the attempt was made to understand the combine impact of circumferential casing grooves (CCG) of constant aspect ratio and different axial spacing between rotor and stator on the operating stability of single stage transonic axial compressor and that of rotor alone using numerical simulation. The optimum rotor-stator gap in the presence of grooved casing treatment was identified. The steady state numerical analysis was performed by using three-dimensional Reynolds Average Navier-Stokes equation adapting shear stress transport (SST) k-ω turbulence model. The study is reported in two sections. First section includes the detailed numerical study on baseline case having smooth casing wall (SCW). The computational results were validated with the experimental results available at Propulsion Division of CSIR-NAL, Bangalore. The computational study shows good agreement with experimental results. The second section comprises the effects of optimum designs of CCG and various axial spacing on the stall margin improvement of transonic compressor. Current computational study shows that the axial spacing between rotor and stator is an important parameter for improvement in stall margin not only for SCW but also for CCG. Therefore, the highest stall margin improvement of 9% has achieved for 75% axial spacing.


Author(s):  
Theoklis Nikolaidis ◽  
Periclis Pilidis ◽  
J. A. Teixeira ◽  
V. Pachidis

A numerical approach was used to evaluate the liquid water film thickness and its motion on an axial flow compressor rotor blade under water ingestion conditions. By post-processing blading data and using computer programs to create the blades and their computational grid, the global computational domain of the first stage of an axial flow compressor was built. The flow field within the domain was solved by CFX-Tascflow, which is a commercial CFD code commonly used in turbomachinery. The computational domain consists of an extended inlet, an inlet guide vane, a rotor and a stator blade. Having solved the flow field at Design Point, the inlet guide vane blade was re-positioned to account for changes in idle speed. At that speed, the effects of water ingestion are expected to be more significant on gas turbine engine performance. Several cases with water ingestion were studied, changing parameters like water mass and compressor rotational speed. A FORTRAN computer program was created to calculate the water film height and speed. The extra torque needed by the compressor to keep running at the same rotational speed, was also calculated. The considerable increase in torque was confirmed by experimental observations according to which water ingestion had a detrimental effect on gas turbine operation.


Author(s):  
M. T. Shobhavathy ◽  
Premakara Hanoca

This paper comprises the Computational Fluid Dynamic (CFD) analysis to investigate the flow behaviour of a high speed single stage transonic axial flow compressor. Steady state analyses were carried out at design and part speed conditions to obtain the overall performance map using commercial CFD software ANSYS FLUENT. Radial distribution of flow parameters were obtained at 90% of design speed for the choked flow and near stall flow conditions. The predicted data were validated against available experimental results. The end wall flow fields were studied with the help of velocity vector plots and Mach number contours at peak efficiency and near stall flow conditions at 60% and 100% design speeds. This study exhibited the nature of a transonic compressor, having strong interaction between the rotor passage shock and the tip leakage vortex at design speed, which generates a region of high blockage in the rotor blade passage. The influence of this interaction extends around15% of the blade outer span at design speed and in the absence of blade passage shock at 60% design speed, the influence of tip leakage flow observed was around 8%.


Author(s):  
Pritam Batabyal ◽  
Dilipkumar B. Alone ◽  
S. K. Maharana

This paper presents a numerical case study of various stepped tip clearances and their effect on the performance of a single stage transonic axial flow compressor, using commercially available software ANSYS FLUENT 14.0. A steady state, implicit, three dimensional, pressure based flow solver with SST k-Ω turbulence model has been selected for the numerical study. The stepped tip clearances have been compared with the baseline model of zero tip clearance at 70% and 100 % design speed. It has been observed that the compressor peak stage efficiency and maximum stage pressure ratio decreases as the tip clearances in the rear part are increased. The stall margin also increases with increase in tip clearance compared to the baseline model. An ‘optimum’ value of stepped tip clearance has been obtained giving peak stage compressor performance. The CFD results have been validated with the earlier published experimental data on the same compressor at 70% design speed.


1996 ◽  
Vol 118 (2) ◽  
pp. 189-196 ◽  
Author(s):  
C. A. Poensgen ◽  
H. E. Gallus

This paper describes the results on an experimental investigation of rotating stall flow inside a single-stage axial flow compressor. Tests were carried out in two steps. First, measurements were taken to investigate the transition process into rotating stall. The compressor starts into rotating stall via the “modal route” with a single rotating stall cell. Further throttling yields to a two-cell shape followed by a significant outlet pressure drop. Both transition processes are discussed in detail. Results from the Moore–Greitzer theory are compared with measured data. In a second step, measurements were taken to determine the three-dimensional unsteady structure of a fully developed rotating-stall cell. Based on unsteady total pressure and three-dimensional hot-wire data, the structure of a rotating stall cell could be resolved in detail upstream and downstream of the rotor. A typical part-span stall was found. By inserting the measured data into the Euler equations, convective and unsteady effects on the pressure fluctuations can be isolated. A dependence between the radial flow inside the stall cell and the unsteady flow accelerations was found.


Author(s):  
C. A. Poensgen ◽  
H. E. Gallus

This paper describes the results on an experimental investigation of rotating stall flow inside a single stage axial flow compressor. Tests were carried out in two steps. First, measurements were taken to investigate the transition process into rotating stall. The compressor starts into rotating stall via the “modal route” with a single rotating stall cell. Further throttling yields to a two-cell shape followed by a significant outlet pressure drop. Both transition processes are discussed in detail. Results from the Moore-Greitzer theory are compared with measured data. In a second step measurements were taken to determine the three-dimensional unsteady structure of a full developed rotating-stall cell. Based on unsteady total pressure and threedimensional hot-wire data, the structure of a rotating stall cell could be resolved in detail upstream and downstream the rotor. A typical part-span stall was found. By inserting the measured data into the Euler-equations convective and unsteady effects on the pressure fluctuations can be isolated. A dependence between the radial flow inside the stall cell and the unsteady flow accelerations was found.


Sign in / Sign up

Export Citation Format

Share Document