Reverse current‐voltage characteristic of almost ideal siliconp‐njunctions

1991 ◽  
Vol 69 (2) ◽  
pp. 1071-1080 ◽  
Author(s):  
B. Pellegrini
Author(s):  
О.О. Маматкаримов ◽  
О. Химматкулов ◽  
И.Г. Турсунов

Abstract The effect of uniaxial elastic deformation on the current–voltage characteristic of surface–barrier Sb– p -Si〈Mn〉–Au diodes is studied. It is shown that reverse-current sensitivity to uniaxial compression exceeds the forward-current sensitivity at identical applied voltages. An increase in the forward current of these structures during deformation is caused by internal gain associated with redistribution of the applied voltage between the base and barrier.


Author(s):  
Alexander A. Logachev ◽  
Irina N. Poluyanova ◽  
Konstantin K. Zabello ◽  
Sergey M. Shkol'nik

2004 ◽  
Vol 30 (9) ◽  
pp. 736-738
Author(s):  
I. K. Kamilov ◽  
K. M. Aliev ◽  
Kh. O. Ibragimov ◽  
N. S. Abakarova

2018 ◽  
Vol 32 (29) ◽  
pp. 1850323
Author(s):  
Ting Ting Zhang ◽  
Cai Juan Xia ◽  
Bo Qun Zhang ◽  
Xiao Feng Lu ◽  
Yang Liu ◽  
...  

The electronic transport properties of oligo p-phenylenevinylene (OPV) molecule sandwiched with symmetrical or asymmetric tailoring graphene nanoribbons (GNRs) electrodes are investigated by nonequilibrium Green’s function in combination with density functional theory. The results show that different tailored GNRs electrodes can modulate the current–voltage characteristic of molecular devices. The rectifying behavior can be observed with respect to electrodes, and the maximum rectification ratio can reach to 14.2 in the asymmetric AC–ZZ GNRs and ZZ–AC–ZZ GNRs electrodes system. In addition, the obvious negative differential resistance can be observed in the symmetrical AC-ZZ GNRs system.


Sign in / Sign up

Export Citation Format

Share Document