scholarly journals Влияние одноосной упругой деформации на вольт-амперную характеристику поверхностно-барьерных диодов Sb-p-Si<Mn>-Au

Author(s):  
О.О. Маматкаримов ◽  
О. Химматкулов ◽  
И.Г. Турсунов

Abstract The effect of uniaxial elastic deformation on the current–voltage characteristic of surface–barrier Sb– p -Si〈Mn〉–Au diodes is studied. It is shown that reverse-current sensitivity to uniaxial compression exceeds the forward-current sensitivity at identical applied voltages. An increase in the forward current of these structures during deformation is caused by internal gain associated with redistribution of the applied voltage between the base and barrier.

2011 ◽  
Vol 133 (1) ◽  
Author(s):  
A. Al Tarabsheh ◽  
I. Etier

This paper analyzes the ideality factor of amorphous silicon (a-Si:H) solar cells as a function of both the thickness of the intrinsic layer and the applied voltage to the cells. The ideality factor in this work is extracted from the current/voltage characteristic that is calculated by solving the continuity and transport equations and taking into account the contributions of diffusion and drift currents for minority and majority carriers and, especially, the nonequality of mobilities and lifetimes of electrons and holes in a-Si:H solar cells.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Meisam Rahmani ◽  
Razali Ismail ◽  
Mohammad Taghi Ahmadi ◽  
Mohammad Javad Kiani ◽  
Mehdi Saeidmanesh ◽  
...  

Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking) and metal (AA stacking) layers. To this end, an analytical model joint with numerical solution of carrier concentration for bilayer graphene nanoribbon in the degenerate and nondegenerate regimes is presented. Moreover, to determine the proposed diode performance, the carrier concentration model is adopted to derive the current-voltage characteristic of the device. The simulated results indicate a strong bilayer graphene nanoribbon geometry and temperature dependence of current-voltage characteristic showing that the forward current of the diode rises by increasing of width. In addition, the lower value of turn-on voltage appears as the more temperature increases. Finally, comparative study indicates that the proposed diode has a better performance compared to the silicon schottky diode, graphene nanoribbon homo-junction contact, and graphene-silicon schottky diode in terms of electrical parameters such as turn-on voltage and forward current.


1989 ◽  
Vol 148 ◽  
Author(s):  
T. Egawa ◽  
S. Nozaki ◽  
N. Noto ◽  
T. Soga ◽  
T. Jimbo ◽  
...  

ABSTRACTWe have studied the crystallinity and Schottky diode characteristics of GaAs/Si grown by MOCVD. In comparison with two-step growth and GaP/strained layer superlattice techniques, the crystallinity and the Schottky diode characteristics are superior for the GaAs/Si with Al0.5Ga0.5P as an intermediate layer. The GaAs/Si grown with the Al0.5Ga0.5 intermediate layer shows mirror—like surface morphology and an X-ray FMHM of 188 arcs. The ideality factor of the Schottky diode fabricated on the GaAs/Si grown with the Al0.5Ga0.5P intermediate layer is 1.06, but its forward current-voltage characteristic shows a significant leakage current at small forward bias. It is also found that the composition of Al affects strongly the crystallinity and the Schottky characteristics of GaAs/Si.


Author(s):  
Alexander A. Logachev ◽  
Irina N. Poluyanova ◽  
Konstantin K. Zabello ◽  
Sergey M. Shkol'nik

2004 ◽  
Vol 30 (9) ◽  
pp. 736-738
Author(s):  
I. K. Kamilov ◽  
K. M. Aliev ◽  
Kh. O. Ibragimov ◽  
N. S. Abakarova

Sign in / Sign up

Export Citation Format

Share Document