Use of square waves incident on magnetic nanoparticles to induce magnetic hyperthermia for therapeutic cancer treatment

2010 ◽  
Vol 97 (9) ◽  
pp. 093705 ◽  
Author(s):  
Sean M. Morgan ◽  
R. H. Victora
Author(s):  
Laura Asín ◽  
Grazyna Stepien ◽  
María Moros ◽  
Raluca Maria Fratila ◽  
Jesús Martínez de la Fuente

2018 ◽  
Vol 18 (8) ◽  
pp. 1138-1147 ◽  
Author(s):  
Esra Metin ◽  
Pelin Mutlu ◽  
Ufuk Gündüz

Background: Although conventional chemotherapy is the most common method for cancer treatment, it has several side effects such as neuropathy, alopecia and cardiotoxicity. Since the drugs are given to body systemically, normal cells are also affected, just like cancer cells. However, in recent years, targeted drug delivery has been developed to overcome these drawbacks. Objective: The aim of this study was targeted co-delivery of doxorubicin (Dox) which is an anticancer agent and D-α-Tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS or simply TPGS) to breast cancer cells. For this purpose, Magnetic Nanoparticles (MNPs) were synthesized and coated with Oleic Acid (OA). Coated nanoparticles were encapsulated in Poly Lactic-co-Glycolic Acid (PLGA) and TPGS polymers and loaded with Dox. The Nanoparticles (NPs) were characterized by Fourier Transform Infrared (FTIR) spectroscopy, zetapotential analysis, Dynamic Light Scattering (DLS) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) analysis. Results: The results showed that NPs were spherical, superparamagnetic and in the desired range for use in drug targeting. The targetability of NPs was confirmed. Moreover, TPGS and Dox loading was shown by TGA and FTIR analyses. NPs were internalized by cells and the cytotoxic effect of drug loaded NPs on sensitive (MCF-7) and drug-resistant (MCF-7/Dox) cells were examined. It was seen that the presence of TPGS increased cytotoxicity significantly. TPGS also enhanced drug loading efficiency, release rate, cellular internalization. In MCF- 7/Dox cells, the drug resistance seems to be decreased when Dox is loaded onto TPGS containing NPs. Conclusion: This magnetic PLGA nanoparticle system is important for new generation targeted chemotherapy and could be used for breast cancer treatment after in vivo tests.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaser Hadadian ◽  
Ana Paula Ramos ◽  
Theo Z. Pavan

AbstractOptimizing the intrinsic properties of magnetic nanoparticles for magnetic hyperthermia is of considerable concern. In addition, the heating efficiency of the nanoparticles can be substantially influenced by dipolar interactions. Since adequate control of the intrinsic properties of magnetic nanoparticles is not straightforward, experimentally studying the complex interplay between these properties and dipolar interactions affecting the specific loss power can be challenging. Substituting zinc in magnetite structure is considered as an elegant approach to tune its properties. Here, we present experimental and numerical simulation results of magnetic hyperthermia studies using a series of zinc-substituted magnetite nanoparticles (ZnxFe1-xFe2O4, x = 0.0, 0.1, 0.2, 0.3 and 0.4). All experiments were conducted in linear regime and the results were inferred based on the numerical simulations conducted in the framework of the linear response theory. The results showed that depending on the nanoparticles intrinsic properties, interparticle interactions can have different effects on the specific loss power. When dipolar interactions were strong enough to affect the heating efficiency, the parameter σ = KeffV/kBT (Keff is the effective anisotropy and V the volume of the particles) determined the type of the effect. Finally, the sample x = 0.1 showed a superior performance with a relatively high intrinsic loss power 5.4 nHm2kg−1.


Sign in / Sign up

Export Citation Format

Share Document