Properties of the TiSi2/p+nstructures formed by ion implantation through silicide and rapid thermal annealing

1992 ◽  
Vol 72 (1) ◽  
pp. 73-77 ◽  
Author(s):  
H. B. Erzgräber ◽  
P. Zaumseil ◽  
E. Bugiel ◽  
R. Sorge ◽  
K. Tittelbach‐Helmrich ◽  
...  
1989 ◽  
Vol 147 ◽  
Author(s):  
Samuel Chen ◽  
S.-Tong Lee ◽  
G. Braunstein ◽  
G. Rajeswaran ◽  
P. Fellinger

AbstractDefects induced by ion implantation and subsequent annealing are found to either promote or suppress layer intermixing in Ill-V compound semiconductor superlattices (SLs). We have studied this intriguing relationship by examining how implantation and annealing conditions affect defect creation and their relevance to intermixing. Layer intermixing has been induced in SLs implanted with 220 keV Si+ at doses < 1 × 1014 ions/cm2 and annealed at 850°C for 3 hrs or 1050°C for 10 s. Upon furnace annealing, significant Si in-diffusion is observed over the entire intermixed region, but with rapid thermal annealing layer intermixing is accompanied by negligible Si movement. TEM showed that the totally intermixed layers are centered around a buried band of secondary defects and below the Si peak position. In the nearsurface region layer intermixing is suppressed and is only partially completed at ≤1 × 1015 Si/cm2. This inhibition is correlated to a loss of the mobile implantation-induced defects, which are responsible for intermixing.


2017 ◽  
Vol 05 (01) ◽  
pp. 15-25
Author(s):  
Junji Yamanaka ◽  
Shigenori Inoue ◽  
Keisuke Arimoto ◽  
Kiyokazu Nakagawa ◽  
Kentarou Sawano ◽  
...  

1985 ◽  
Vol 52 ◽  
Author(s):  
D. L. Kwong ◽  
N. S. Alvi ◽  
Y. H. Ku ◽  
A. W. Cheung

ABSTRACTDouble-diffused shallow junctions have been formed by ion implantation of both phosphorus and arsenic ions into silicon substrates and rapid thermal annealing. Experimental results on defect removal, impurity activation and redistribution, effects of Si preamorphization, and electrical characteristics of Ti-silicided junctions are presented.


1986 ◽  
Vol 69 ◽  
Author(s):  
D. Kirillov ◽  
P. Ho ◽  
G. A. Davis

AbstractRaman scattering was applied to study mixing of GaAs/AlAs superlattices. Different implantation ions and doses were used. The evolution from partially amorphous to completely amorphous and from partially mixed to completely mixed structures was observed. Rapid thermal annealing caused recrystallization of the damaged material. Different types of structures were obtained, depending on the implantation doses and species of ions. Completely mixed crystalline alloys could be obtained only for high implantation doses.


1987 ◽  
Vol 5 (9) ◽  
pp. 311-314 ◽  
Author(s):  
M.C. Ozturk ◽  
J.J. Wortman ◽  
W.K. Chu ◽  
G. Rozgonyi ◽  
D.P. Griffis

2000 ◽  
Vol 647 ◽  
Author(s):  
Todd W. Simpson ◽  
Paul G. Piva ◽  
Ian V. Mitchell

AbstractIon implantation followed by rapid thermal annealing is used to induce layer intermixing and thus selectively blue-shift the emission wavelength of InP-based quantum well hetero- structures. The intermixing is greatly enhanced over thermal intermixing due to the supersaturation of defects. The magnitude of the observed blue-shift has been studied previously as a function of ion fluence and ion mass: the dependence on ion mass is well established, with heavier ions producing a larger shift. We show here that chemical effects can also play a significant role in determining the induced blue-shift. Data are presented from the implantation of the similar mass ions; aluminum (m~27), silicon (m~28) and phosphorus (m~31). The P- induced blue shift displays a monotonic increase with fluence, consistent with previous studies; however, the fluence dependence of Al- and Si-induced blue-shifts both deviate significantly from the behaviour for P. These results have important implications for attempts to scale intermixing behaviour with ion mass.


2004 ◽  
Vol 03 (04n05) ◽  
pp. 425-430 ◽  
Author(s):  
A. MARKWITZ ◽  
S. JOHNSON ◽  
M. RUDOLPHI ◽  
H. BAUMANN

A combination of 10 keV 13 C low energy ion implantation and electron beam rapid thermal annealing (EB-RTA) is used to fabricate silicon carbide nanostructures on (100) silicon surfaces. These large ellipsoidal features appear after EB-RTA at 1000°C for 15 s. Prior to annealing, the silicon surfaces are virgin-like flat. Atomic force microscopy was used to study the morphology of these structures and it was found that the diameter and number of nanoboulders are linearly dependent on the implantation fluence. Further, a linear relationship between nanoboulder diameter and spacing suggests crystal coarsening is a fundamental element in the growth mechanism.


Sign in / Sign up

Export Citation Format

Share Document