GROWTH OF SiC NANOSTRUCTURES ON Si (100) USING LOW ENERGY CARBON ION IMPLANTATION AND ELECTRON BEAM RAPID THERMAL ANNEALING

2004 ◽  
Vol 03 (04n05) ◽  
pp. 425-430 ◽  
Author(s):  
A. MARKWITZ ◽  
S. JOHNSON ◽  
M. RUDOLPHI ◽  
H. BAUMANN

A combination of 10 keV 13 C low energy ion implantation and electron beam rapid thermal annealing (EB-RTA) is used to fabricate silicon carbide nanostructures on (100) silicon surfaces. These large ellipsoidal features appear after EB-RTA at 1000°C for 15 s. Prior to annealing, the silicon surfaces are virgin-like flat. Atomic force microscopy was used to study the morphology of these structures and it was found that the diameter and number of nanoboulders are linearly dependent on the implantation fluence. Further, a linear relationship between nanoboulder diameter and spacing suggests crystal coarsening is a fundamental element in the growth mechanism.

1988 ◽  
Vol 144 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C. A. Armiento

ABSTRACTLow energy ion implantation followed by rapid thermal annealing (RTA) was utilized to modify exciton transition energies of MBE- rown GaAs/AlGaAs quantum wells (QW). The samples were irradiated with an 75As ion beam with an energy low enough that the depth of the disordered region was spatially separated from the QWs. After RTA, exciton energies (determined using optical spectroscopy) showed large increases which were dependent on QW widths and the implantation fluence with no significant increases in peak linewidths. These energy shifts were interpreted as resulting from the modification of the shapes of the as-grown QWs from square (abrupt interfaces) to rounded due to enhanced Ga and Al interdiffusion in irradiated areas. These results are similar to our data on the RTA of the same structures capped with SiO2 and are consistent with the model of enhanced intermixing of Al and Ga atoms due to diffusion of vacancies generated near the surface.


2004 ◽  
Vol 11 (03) ◽  
pp. 265-269
Author(s):  
O. P. SINHA ◽  
P. C. SRIVASTAVA ◽  
V. GANESAN

The p-silicon surfaces have been irradiated with ~ 100 MeV Si 7+ions to a fluence of 2.2×1013 ions cm -2, and surface morphology has been studied with atomic force microscopy (AFM). Interesting features of cracks of ~ 47 nm in depth and ~ 103 nm in width on the irradiated surfaces have been observed. The observed features seemed to have been caused by the irradiation-induced stress in the irradiated regions of the target surface.


2012 ◽  
Vol 730-732 ◽  
pp. 257-262
Author(s):  
Bruno Nunes ◽  
Sergio Magalhães ◽  
Nuno Franco ◽  
Eduardo Alves ◽  
Ana Paula Serro ◽  
...  

Aiming to improve the nanotribological response of Si-based materials we implanted silicon wafers with different fluences of iron ions (up to 2x1017 cm-2). Implantation was followed by annealing treatments at temperatures from 550°C to 1000°C. The implanted surfaces were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM) and wettability tests. Then, samples were submitted to AFM-based nanowear tests. We observe an increase of both hidrophobicity and and wear resistance of the implanted silicon, indicating that ion implantation of Si can be a route to be deeper explored in what concerns tribomechanical improvement of Si.


Sign in / Sign up

Export Citation Format

Share Document