Silicon damage studies due to ultra-low-energy ion implantation with heavy species and rapid thermal annealing

2000 ◽  
Vol 3 (4) ◽  
pp. 291-296 ◽  
Author(s):  
S Moffatt ◽  
P.L.F Hemment ◽  
S Whelan ◽  
D.G Armour
2004 ◽  
Vol 03 (04n05) ◽  
pp. 425-430 ◽  
Author(s):  
A. MARKWITZ ◽  
S. JOHNSON ◽  
M. RUDOLPHI ◽  
H. BAUMANN

A combination of 10 keV 13 C low energy ion implantation and electron beam rapid thermal annealing (EB-RTA) is used to fabricate silicon carbide nanostructures on (100) silicon surfaces. These large ellipsoidal features appear after EB-RTA at 1000°C for 15 s. Prior to annealing, the silicon surfaces are virgin-like flat. Atomic force microscopy was used to study the morphology of these structures and it was found that the diameter and number of nanoboulders are linearly dependent on the implantation fluence. Further, a linear relationship between nanoboulder diameter and spacing suggests crystal coarsening is a fundamental element in the growth mechanism.


2012 ◽  
Vol 195 ◽  
pp. 274-276 ◽  
Author(s):  
Philipp Hönicke ◽  
Matthias Müller ◽  
Burkhard Beckhoff

The continuing shrinking of the component dimensions in ULSI technology requires junction depths in the 20-nm regime and below to avoid leakage currents. These ultra shallow dopant distributions can be formed by ultra-low energy (ULE) ion implantation. However, accurate measurement techniques for ultra-shallow dopant profiles are required in order to characterize ULE implantation and the necessary rapid thermal annealing (RTA) processes.


2001 ◽  
Vol 669 ◽  
Author(s):  
Veerle Meyssen ◽  
Peter Stolk ◽  
Jeroen van Zijl ◽  
Jurgen van Berkum ◽  
Willem van de Wijgert ◽  
...  

ABSTRACTThis paper studies the use of ion implantation and rapid thermal annealing for the fabrication of shallow junctions in sub-100 nm CMOS technology. Spike annealing recipes were optimized on the basis of delta-doping diffusion experiments and shallow junction characteristics. In addition, using GeF2 pre-amorphization implants in combination with low-energy BF2 and spike annealing, p-type junctions depths of 30 nm were obtained with sheet resistances as low as 390 Ω/sq. The combined finetuning of implantation and annealing conditions is expected to enable junction scaling into the 70-nm CMOS technology node.


1988 ◽  
Vol 144 ◽  
Author(s):  
B. Elman ◽  
Emil S. Koteles ◽  
P. Melman ◽  
C. A. Armiento

ABSTRACTLow energy ion implantation followed by rapid thermal annealing (RTA) was utilized to modify exciton transition energies of MBE- rown GaAs/AlGaAs quantum wells (QW). The samples were irradiated with an 75As ion beam with an energy low enough that the depth of the disordered region was spatially separated from the QWs. After RTA, exciton energies (determined using optical spectroscopy) showed large increases which were dependent on QW widths and the implantation fluence with no significant increases in peak linewidths. These energy shifts were interpreted as resulting from the modification of the shapes of the as-grown QWs from square (abrupt interfaces) to rounded due to enhanced Ga and Al interdiffusion in irradiated areas. These results are similar to our data on the RTA of the same structures capped with SiO2 and are consistent with the model of enhanced intermixing of Al and Ga atoms due to diffusion of vacancies generated near the surface.


1992 ◽  
Vol 72 (1) ◽  
pp. 73-77 ◽  
Author(s):  
H. B. Erzgräber ◽  
P. Zaumseil ◽  
E. Bugiel ◽  
R. Sorge ◽  
K. Tittelbach‐Helmrich ◽  
...  

1989 ◽  
Vol 147 ◽  
Author(s):  
Samuel Chen ◽  
S.-Tong Lee ◽  
G. Braunstein ◽  
G. Rajeswaran ◽  
P. Fellinger

AbstractDefects induced by ion implantation and subsequent annealing are found to either promote or suppress layer intermixing in Ill-V compound semiconductor superlattices (SLs). We have studied this intriguing relationship by examining how implantation and annealing conditions affect defect creation and their relevance to intermixing. Layer intermixing has been induced in SLs implanted with 220 keV Si+ at doses < 1 × 1014 ions/cm2 and annealed at 850°C for 3 hrs or 1050°C for 10 s. Upon furnace annealing, significant Si in-diffusion is observed over the entire intermixed region, but with rapid thermal annealing layer intermixing is accompanied by negligible Si movement. TEM showed that the totally intermixed layers are centered around a buried band of secondary defects and below the Si peak position. In the nearsurface region layer intermixing is suppressed and is only partially completed at ≤1 × 1015 Si/cm2. This inhibition is correlated to a loss of the mobile implantation-induced defects, which are responsible for intermixing.


2017 ◽  
Vol 05 (01) ◽  
pp. 15-25
Author(s):  
Junji Yamanaka ◽  
Shigenori Inoue ◽  
Keisuke Arimoto ◽  
Kiyokazu Nakagawa ◽  
Kentarou Sawano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document