Dangling bond-induced graphitization process on the (111) surface of diamond nanoparticles

2011 ◽  
Vol 134 (4) ◽  
pp. 044711 ◽  
Author(s):  
Le-sheng Li ◽  
Xiang Zhao
1996 ◽  
Vol 452 ◽  
Author(s):  
N. H. Nickel ◽  
E. A. Schiff

AbstractThe temperature dependence of the silicon dangling-bond resonance in polycrystalline (poly-Si) and amorphous silicon (a-Si:H) was measured. At room temperature, electron paramagnetic resonance (EPR) measurements reveal an isotropie g-value of 2.0055 and a line width of 6.5 and 6.1 G for Si dangling-bonds in a-Si:H and poly-Si, respectively. In both materials spin density and g-value are independent of temperature. While in a-Si:H the width of the resonance did not change with temperature, poly-Si exhibits a remarkable T dependence of ΔHpp. In unpassivated poly-Si a pronounced decrease of ΔHpp is observed for temperatures above 300 K. At 384 K ΔHpp reaches a minimum of 5.1 G, then increases to 6.1 G at 460 K, and eventually decreases to 4.6 G at 530 K. In hydrogenated poly-Si ΔHpp decreases monotonically above 425 K. The decrease of ΔHpp is attributed to electron hopping causing motional narrowing. An average hopping distance of 15 and 17.5 Å was estimated for unhydrogenated and H passivated poly-Si, respectively.


2015 ◽  
Vol 57 (11) ◽  
pp. 1485-1490 ◽  
Author(s):  
S. A. Vorozhtsov ◽  
А. P. Khrustalyov ◽  
D. G. Eskin ◽  
S. N. Кulkov ◽  
N. Alba-Baena

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2873
Author(s):  
Ana Barrera ◽  
Corinne Binet ◽  
Frédéric Dubois ◽  
Pierre-Alexandre Hébert ◽  
Philippe Supiot ◽  
...  

In the present work, the dielectric properties of recycled liquid crystals (LCs) (non-purified, purified, and doped with diamond nanoparticles at 0.05, 0.1, and 0.2 wt%) were investigated. The studied LC mixtures were obtained from industrial recycling of end-of-life LC displays presenting mainly nematic phases. Dielectric measurements were carried out at room temperature on a frequency range from 0.1 to 106 Hz using an impedance analyzer. The amplitude of the oscillating voltage was fixed at 1 V using cells with homogeneous and homeotropic alignments. Results show that the dielectric anisotropy of all purified samples presents positive values and decreases after the addition of diamond nanoparticles to the LC mixtures. DC conductivity values were obtained by applying the universal law of dielectric response proposed by Jonscher. In addition, conductivity of the doped LC mixtures is lower than that of the undoped and non-purified LC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1393
Author(s):  
Carolina Ramos Hurtado ◽  
Gabriela Ramos Hurtado ◽  
Gabrielle Lupeti de Cena ◽  
Rafaela Campos Queiroz ◽  
Alexandre Vieira Silva ◽  
...  

Conjugation of photosensitizers (PS) with nanoparticles has been largely used as a strategy to stabilize PS in the biological medium resulting in photosensitizing nanoparticles of enhanced photoactivity. Herein, (Meso-5, 10, 15, 20-tetrakis (3-hydroxyphenyl) phorphyryn (mTHPP) was conjugated with diamond nanoparticles (ND) by covalent bond. Nanoconjugate ND-mTHPP showed suitable stability in aqueous suspension with 58 nm of hydrodynamic diameter and Zeta potential of −23 mV. The antibacterial activity of ND-mTHPP was evaluated against Escherichia coli for different incubation times (0–24 h). The optimal activity was observed after 2 h of incubation and irradiation (660 nm; 51 J/cm2) performed right after the addition of ND-mTHPP (100 μg/mL) to the bacterial suspension. The inhibitory activity was 56% whereas ampicillin at the same conditions provided only 14% of bacterial growth inhibition. SEM images showed agglomerate of ND-mTHPP adsorbed on the bacterial cell wall, suggesting that the antimicrobial activity of ND-mTHPP was afforded by inducing membrane damage. Cytotoxicity against murine embryonic fibroblast cells (MEF) was also evaluated and ND-mTHPP was shown to be noncytotoxic since viability of cells cultured for 24 h in the presence of the nanoconjugate (100 μg/mL) was 78%. Considering the enhanced antibacterial activity and the absence of cytotoxic effect, it is possible to consider the ND-mTHPP nanoconjugate as promising platform for application in antimicrobial photodynamic therapy (aPDT).


1977 ◽  
Vol 55 (11) ◽  
pp. 1930-1936 ◽  
Author(s):  
Melvin Cutler

Recent work has provided independent information about the behavior of the hole concentration c in TlxTe1−x as a function of temperature T and composition x in the range 0.2 ≤ x ≤ 0.6. This makes possible a critical reexamination of a molecular bond model for the structure of the alloy, in which holes are generated by broken Te—Te bonds. The earlier theory is revised to formulate an unrestricted independent bond model (ibm), for which the equations are simple and have obvious physical interpretations. This provides a good description of c(T) but only a qualitatively correct c(x). Using a Thomas–Fermi model for the screening interaction between holes and the acceptor ions, it is shown that the equilibrium constant can be expected to increase rapidly with c at large enough values. A modification in which the free energy of a dangling bond is decreased by proximity to a Tl—Te bond is found to significantly improve the result for c(x). The thermochemical behavior is derived. The entropy of mixing is in fair agreement with experiment, but the enthalpy of mixing is grossly wrong. This reflects the neglect of intermolecular interactions in the theory, which, it seems, can easily account for the remaining discrepancies in the predicted behavior of c.


2017 ◽  
Vol 8 ◽  
pp. 1649-1657 ◽  
Author(s):  
Antonín Brož ◽  
Lucie Bačáková ◽  
Pavla Štenclová ◽  
Alexander Kromka ◽  
Štěpán Potocký

Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18–210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80–85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.


2016 ◽  
Vol 18 (5) ◽  
pp. 3854-3861 ◽  
Author(s):  
Szymon Godlewski ◽  
Marek Kolmer ◽  
Mads Engelund ◽  
Hiroyo Kawai ◽  
Rafal Zuzak ◽  
...  

Starphene molecules are weakly attached to single dangling bond quantum dots, retaining the unperturbed originally designed electronic properties.


1993 ◽  
Vol 48 (23) ◽  
pp. 17595-17598 ◽  
Author(s):  
H. Jia ◽  
J. Shinar ◽  
D. P. Lang ◽  
M. Pruski

Sign in / Sign up

Export Citation Format

Share Document