diamond nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 70)

H-INDEX

44
(FIVE YEARS 5)

2021 ◽  
Vol 33 (10) ◽  
pp. 105605
Author(s):  
Lei Huang ◽  
Xiangqing Wu ◽  
Ryota Hijiya ◽  
Kungen Teii

Abstract Seeding of diamond nanoparticles on vertically-aligned multi-layer graphene, the so-called carbon nanowalls (CNWs), is studied by using deionized water, ethylene glycol, ethanol, and formamide as dispersion mediums. Detonation nanodiamond particles show the smallest mean size and size distribution with a high positive zeta potential when dispersed in ethanol. The contact angle of ethanol on CNWs is almost zero degree, confirming highly wetting behaviour. The diamond nanoparticles dispersed in ethanol are distributed the most uniformly with minimal aggregation on CNWs as opposed to those dispersed in other liquids. The resulting diamond nanoparticle-seeded CNWs, followed by short-term growth in microwave plasma chemical vapor deposition, show a marked decrease in field emission turn-on field down to 1.3 V μm−1 together with a large increase in current density, compared to bare CNWs without diamond seeding. The results provide a way to control the density, size, and uniformity (spacing) of diamond nanoparticles on CNWs and should be applied to fabricate hybrid materials and devices using nanodiamond and nanocarbons.


Author(s):  
Yuliya Mindarava ◽  
Rémi Blinder ◽  
Valery A. Davydov ◽  
Mustapha Zaghrioui ◽  
Viatcheslav N. Agafonov ◽  
...  

Author(s):  
Elham Moradi ◽  
Parvaneh Naserzadeh ◽  
Peiman Brouki Millan ◽  
Behnaz Ashtari

Abstract The cytotoxicity of diamond nanoparticles (DNs) to various cell lines has been on focus by numerous scientists. The cellular toxicity system of DNs has not been fully understood or explained in skin cancer, at this point. This research was carried out to discover and reveal the potential impacts of DNs on the secluded brain, heart, liver, kidney, and skin in addition to evaluation of their cytotoxicity mechanism under test conditions. Their biological activities, for example cell viability, the level of reactive oxygen species (ROS), lipid peroxidation, cytochrome c release and Apoptosis/Necrosis were evaluated. Additionally, the bio-distribution of these nanomaterials in tissues was examined in the C57 mouse. Relying on the findings of the investigation, DNs were found to increase the ROS level, MDA content, release of cytochrome c, and cell death in skin significantly compared to other groups. In the C57 mouse, DNs were observed to have accumulated in skin tissue more intensively than they did in other organs. The present study presents for the the proof that DNs can completely induce cell death signaling in skin cancer without bringing about a high cytotoxicity in other tissues. Results suggest that DNs can be valuable in recognition of skin cancer.


2021 ◽  
Vol 10 ◽  
pp. e2029
Author(s):  
Masoumeh Masoumi ◽  
Mitra Salehi ◽  
Seyed Abdolhamid Angaji ◽  
Mehrdad Hashemi

Background: Ischemia-reperfusion (I/R) induced by testicular torsion can damage the testicles. In the present study, we assessed the effects of coenzyme Q10 (CoQ10) and diamond nanoparticles on sperm parameters in I/R testes in rats. Materials and Methods: Forty-eight Wistar adult male rats were divided into eight groups: healthy control (Ch), diamond nanoparticle healthy control group (Ch+Dia), CoQ10 healthy control group (Ch+Q10), diamond nanoparticles+CoQ10 healthy control group (Ch+Q10+Dia), torsion/detorsion group (Ct), the Ct group that received diamond nanoparticles (Ct+Dia), the Ct group that received CoQ10 (Ct+Q10), and Ct group that received diamond nanoparticles and CoQ10 (Ct+Q10+Dia). The rats were euthanized, and we collected the semen from the epididymal tissues to evaluate sperm viability, motility, concentration, and morphology parameters. Results: The I/R of the testicles significantly reduced sperm concentration, motility, viability, and altered sperm morphology in the rats. However, the administration of CoQ10 significantly improved sperm parameters in the rats with testicular I/R. Diamond nanoparticles decreased the sperm parameters; however, simultaneous administration of diamond nanoparticles and CoQ10 led to improved sperm parameters. Conclusion: CoQ10 potentially appeared to have protective effects against the long-term side-effects of I/R in testes in rats. Co-administration of diamond nanoparticles with CoQ10 significantly improved sperm parameters and greatly reduced the negative effects of diamond nanoparticles alone. Therefore, green synthesis of nanoparticles with the use of antioxidants such as CoQ10 is recommended. [GMJ.2021;10:e2029]


2021 ◽  
Author(s):  
Hamid Reza Dehghanpour ◽  
Mahsa Shabani

Abstract In this work, the growth and characterization of potassium chloride crystals containing diamond nanoparticles has been performed. The crystals were grown by the Czochralski method and the doped samples contained 0.5, 1 and 1.5% impurities of diamond nanoparticles. The crystals were characterized by X ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), etching and thermoluminesence (TL). The XRD analysis shows the most of the nanodiamonds are still in single crystal form. FTIR demonstrates the composed crystals are transparent in IR range (transmission ~ 87%). The etching analysis reveals a crystal dislocation in order of 105 for the samples. Examination of thermoluminescence properties of crystals by gamma irradiation with doses of 10, 80 and 300 Gy showed that the sample with 0.5% doped ND had the best glow curve, but for the dose of 1000 Gy, the sample with 1% doped had the best curve.


Nano Letters ◽  
2021 ◽  
Author(s):  
Dmitry V. Obydennov ◽  
Daniil A. Shilkin ◽  
Ekaterina I. Elyas ◽  
Vitaly V. Yaroshenko ◽  
Oleg S. Kudryavtsev ◽  
...  

Author(s):  
Avinash A. Patil ◽  
Mhikee Janella N. Descanzo ◽  
Justin Benedict A. Agcaoili ◽  
Cheng-Kang Chiang ◽  
Chia-Liang Cheng ◽  
...  

2021 ◽  
pp. 338940
Author(s):  
Elías Blanco ◽  
Laura Rocha ◽  
María del Pozo ◽  
Luis Vázquez ◽  
María Dolores Petit-Domínguez ◽  
...  

2021 ◽  
Vol 27 (S1) ◽  
pp. 1194-1195
Author(s):  
Shery Chang ◽  
Haotian Wen ◽  
David Kordahl ◽  
Christian Dwyer

Sign in / Sign up

Export Citation Format

Share Document