X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap

2011 ◽  
Vol 18 (5) ◽  
pp. 053502 ◽  
Author(s):  
Victor F. Tarasenko ◽  
Yuliya V. Shut’ko
2011 ◽  
Vol 98 (2) ◽  
pp. 021503 ◽  
Author(s):  
Victor F. Tarasenko ◽  
Evgenii Kh. Baksht ◽  
Alexander G. Burahenko ◽  
Yuliya V. Shut’ko

2018 ◽  
Vol 36 (2) ◽  
pp. 186-194 ◽  
Author(s):  
D.A. Sorokin ◽  
V.F. Tarasenko ◽  
Cheng Zhang ◽  
I.D. Kostyrya ◽  
Jintao Qiu ◽  
...  

AbstractThe parameters of X-ray radiation and runaway electron beams (RAEBs) generated at long-pulse discharges in atmospheric-pressure air were investigated. In the experiments, high-voltage pulses with the rise times of 500 and 50 ns were applied to an interelectrode gap. The gap geometry provided non-uniform distribution of the electric field strength. It was founded that at the voltage pulse rise time of 500 ns and the maximum breakdown voltage Um for 1 cm-length gap, a duration [full width at half maximum (FWHM)] of a RAEB current pulse shrinks to 0.1 ns. A decrease in the breakdown voltage under conditions of a diffuse discharge leads to an increase in the FWHM duration of the electron beam current pulse up to several nanoseconds. It was shown that when the rise time of the voltage pulse is of 500 ns and the diffuse discharge occurs in the gap, the FWHM duration of the X-ray radiation pulse can reach ≈100 ns. It was established that at a pulse-periodic diffuse discharge fed by high-voltage pulses with the rise time of 50 ns, an energy of X-ray quanta and their number increase with increasing breakdown voltage. Wherein the parameter Um/pd is saved.


2012 ◽  
Vol 57 (9) ◽  
pp. 1192-1198 ◽  
Author(s):  
S. B. Alekseev ◽  
E. Kh. Baksht ◽  
A. M. Boichenko ◽  
I. D. Kostyrya ◽  
V. F. Tarasenko ◽  
...  

Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 169 ◽  
Author(s):  
Mahbubur Rahman ◽  
Pasan Hettiarachchi ◽  
Vernon Cooray ◽  
Joseph Dwyer ◽  
Vladimir Rakov ◽  
...  

We present observations of X-rays from laboratory sparks created in the air at atmospheric pressure by applying an impulse voltage with long (250 µs) rise-time. X-ray production in 35 and 46 cm gaps for three different electrode configurations was studied. The results demonstrate, for the first time, the production of X-rays in gaps subjected to switching impulses. The low rate of rise of the voltage in switching impulses does not significantly reduce the production of X-rays. Additionally, the timing of the X-ray occurrence suggests the possibility that the mechanism of X-ray production by sparks is related to the collision of streamers of opposite polarity.


2015 ◽  
Vol 81 (5) ◽  
Author(s):  
A. Lvovskiy ◽  
H. R. Koslowski ◽  
L. Zeng ◽  

Disruptions with runaway electron generation have been deliberately induced by injection of argon using a disruption mitigation valve. A second disruption mitigation valve has been utilised to inject varying amounts of helium after a short time delay. No generation of runaway electrons has been observed when more than a critical amount of helium has been injected no later than 5 ms after the triggering of the first valve. The required amount of helium for suppression of runaway electron generation is up to one order of magnitude lower than the critical density according to Connor & Hastie (1975) and Rosenbluth & Putvinski (1997).


2009 ◽  
Vol 24 (6) ◽  
pp. 2021-2028 ◽  
Author(s):  
R. Milani ◽  
R.P. Cardoso ◽  
T. Belmonte ◽  
C.A. Figueroa ◽  
C.A. Perottoni ◽  
...  

High temperature plasma nitriding of yttria-partially-stabilized zirconia in atmospheric pressure microwave plasma was investigated. The morphological, mechanical, and physicochemical characteristics of the resulting nitrided layer were characterized by different methods, such as optical and scanning electron microscopy, microindentation, x-ray diffraction, narrow resonant nuclear reaction profiling, secondary neutral mass spectrometry, and x-ray photoelectron spectroscopy, aiming at investigating the applicability of this highly efficient process for nitriding of ceramics. The structure of the plasma nitrided layer was found to be complex, composed of tetragonal and cubic zirconia, as well as zirconium nitride and oxynitride. The growth rate of the nitrided layer, 4 µm/min, is much higher than that obtained by any other previous nitriding process, whereas a typical 50% increase in Vickers hardness over that of yttria-partially-stabilized zirconia was observed.


Sign in / Sign up

Export Citation Format

Share Document