scholarly journals Characterization of low viscosity polymer solutions for microchip electrophoresis of non-denatured proteins on plastic chips

2011 ◽  
Vol 5 (4) ◽  
pp. 044114 ◽  
Author(s):  
Takao Yasui ◽  
Mohamad Reza Mohamadi ◽  
Noritada Kaji ◽  
Yukihiro Okamoto ◽  
Manabu Tokeshi ◽  
...  
2017 ◽  
Vol 61 (3) ◽  
pp. 467-476 ◽  
Author(s):  
E. Greiciunas ◽  
J. Wong ◽  
I. Gorbatenko ◽  
J. Hall ◽  
M. C. T. Wilson ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengxiao Chen ◽  
Zhe Wang ◽  
Qichong Zhang ◽  
Zhixun Wang ◽  
Wei Liu ◽  
...  

AbstractThe well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Liang Chen ◽  
Peng He ◽  
Zhifeng Jia ◽  
Xinyuan Zhu ◽  
Deyue Yan

AbstractAn economical strategy to prepare hyperbranched poly(sulfone-amine) modified β-cyclodextrins (HPSA-m-CDs) from natural β-cyclodextrin (β-CD) and other commercially available materials has been reported. The final product has many good properties of hyperbranched poly(sulfone-amine)s (good solubility, low viscosity etc.), while its inclusion ability can also be well kept. It is a feasible approach to prepare functionalized modified cyclodextrin at very low cost, and may have potential applications in the fields of catalysis, drug delivery, food additives, etc.


2021 ◽  
Vol 1028 ◽  
pp. 346-351
Author(s):  
Soni Setiadji ◽  
Zulfi Mofa Agasa ◽  
Diba G Auliya ◽  
Fitrilawati ◽  
Norman Syakir ◽  
...  

Duration of use and injectability are external factors for Polydimethylsiloxane (PDMS) that needs to be considered when PDMS utilized as a vitreous substituted liquid in vitreoretinal surgery. In general, PDMS which has been used as a substitute for vitreous humour is PDMS with a low viscosity in the value about 1000 cSt and a high viscosity at a value of about 5000 cSt. Various deficiencies have been encountered from low and high viscosity of PDMS, causing research to be continued to obtain PDMS which has suitable properties as a substitute for vitreous humour. One of them is research to obtain medium viscosity of PDMS with a viscosity value of about 2000 cSt. Here, we reported synthesis and characterization of PDMS with medium viscosity in ranges from 1800 to 2600 mPas. PDMS was synthesized through Ring-Opening Polymerization (ROP) pathway using the monomer of Octamethylcyclotetrasiloxane (D4) and the chain terminator of Hexamethyldisiloxane (MM). Various concentrations of potassium hydroxide (KOH) of 3, 4, 6 and 8 %(w/v) were applied as initiator to form gel of PDMS. All synthesized PDMS samples were identified to have viscosity values of 1800-2600 mPas, refractive index values of 1.4042-1.4044 and surface tension values of 22-23 mN/m. Meanwhile, the results of Fourier-Transform Infrared (FTIR) measurement showed that the absorption peaks were similar to that of our previous report.


2021 ◽  
Vol 65 (4) ◽  
pp. 549-581
Author(s):  
Aritra Santra ◽  
B. Dünweg ◽  
J. Ravi Prakash

Sign in / Sign up

Export Citation Format

Share Document