V–V exchange involving H2O molecules: A calculation of the N2*–H2O deactivation rate constant

1980 ◽  
Vol 72 (12) ◽  
pp. 6593-6601 ◽  
Author(s):  
J. Nagel ◽  
D. Rogovin
2011 ◽  
Vol 1366 ◽  
Author(s):  
Monika K. Wiedmann ◽  
Yomaira J. Pagan-Torres ◽  
Mark H. Tucker ◽  
James A. Dumesic ◽  
T. F. Kuech

ABSTRACTAtomic layer deposition (ALD) has been used to coat SBA-15 and functionalized SBA-15 with various metal oxides. Use of SBA-15 coated with 4-10 ALD cycles of titania, alumina, niobia, or zirconia in the acid-catalyzed dehydration of fructose to 5-hydroxymethylfurfural (HMF) resulted in 24-57% conversion, with 0-22% selectivity, at 130 °C with 2 wt % fructose in 4:1 THF:H2O. Propylsulfonic acid functionalized SBA-15 (SBA-15-PrSO3H) had a 25% conversion and 48% selectivity for HMF under the same conditions. SBA-15-PrSO3H was also coated with 2 ALD cycles of titania followed by 8 ALD cycles silica. The deactivation rate constant for SBA-15-PrSO3H was 2.7 x 10-2 h-1 for the dehydration of fructose to HMF in a flow reactor at 130 °C with a feed of 2 wt % fructose in 4:1 THF:H2O. In comparison, the deactivation rate constant for the ALD coated SBA-15-PrSO3H-ALD was 7.9 x 10-3 h-1.


1989 ◽  
Vol 263 (3) ◽  
pp. 849-853 ◽  
Author(s):  
S A White ◽  
M T Black ◽  
G A Reid ◽  
S K Chapman

A flavocytochrome b2 (L-lactate dehydrogenase) mutant was constructed in which the C-terminal tail (23 amino acid residues) had been deleted (Gly-489→Stop). This tail appears to form many intersubunit contacts in the tetrameric wild-type protein, and it was expected that its removal might lead to the formation of monomeric flavocytochrome b2. The isolated tail-deleted mutant enzyme (TD-b2), however, was found to be tetrameric (Mr 220,000). TD-b2 shows Km and kcat. values (at 25 degrees C and pH 7.5) of 0.96 +/- 0.06 mM and 165 +/- 6 s-1 respectively compared with 0.49 +/- 0.04 mM and 200 +/- 10 s-1 for the wild-type enzyme. The kinetic isotope effect with [2-2H]lactate as substrate seen for TD-b2, with ferricyanide as electron acceptor, was essentially the same as that observed for the wild-type enzyme. TD-b2 exhibited loss of activity during turnover in a biphasic process. The rate of the faster of the two phases was dependent on L-lactate concentration and at saturating concentrations showed a first-order deactivation rate constant, kf(deact.), of 0.029 s-1 (at 25 degrees C and pH 7.5). The slower phase, however, was independent of L-lactate concentration and gave a first-order deactivation rate constant, ks(deact.), of 0.01 s-1 (at 25 degrees C and pH 7.5). This slower phase was found to correlate with dissociation of FMN, which is one of the prosthetic groups of the enzyme. Thus fully deactivated TD-b2, which was also tetrameric, was found to be completely devoid of FMN. Much of the original activity of TD-b2 could be recovered by re-incorporation of FMN. Thus the C-terminal tail of flavocytochrome b2 appears to be required for the structural integrity of the enzyme around the flavin active site even though the two are well separated in space.


2009 ◽  
Vol 28 (1) ◽  
pp. 12-19 ◽  
Author(s):  
Andrew G. Mercader ◽  
Pablo R. Duchowicz ◽  
Francisco M. Fernández ◽  
Eduardo A. Castro ◽  
Franco M. Cabrerizo ◽  
...  

1972 ◽  
Vol 50 (1) ◽  
pp. 1-7 ◽  
Author(s):  
G. I. Mackay ◽  
R. E. March

Total deactivation rate constants have been determined for N2+(B2Σu+) and the (A2Πu) and (B2Σu+) states of CO2+ with a number of quenchers. The energy specific total deactivation rate constant is compared to the total radiative lifetime of the excited species. A particular novelty of the technique is that it does not require a complete knowledge of the formation modes for the excited species. The results are compared with theoretical values obtained from the ion-induced dipole model. Individual deactivation rate constants are presented for N2+(B2Σu+) ions in the v = 0, 1, and 2 vibrational levels quenched by N2, O2, H2, and CO2; and for the(A2Πu) and (B2Σu+) states of CO2+ quenched byCO2, N2, O2, NO, and H2. Charge transfer is the most probable mode of deactivation except in the CO2+–H2 reactions where H-atom abstraction is more probable.


1993 ◽  
Vol 70 (02) ◽  
pp. 326-331 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoef ◽  
R A G Smith ◽  
D Collen

SummaryThe kinetic and fibrinolytic properties of a reversibly acylated stoichiometric complex between human plasmin and recombinant staphylokinase (plasmin-STAR complex) were evaluated. The acylation rate constant of plasmin-STAR by p-amidinophenyl-p’-anisate-HCI was 52 M-1 s-1 and its deacylation rate constant 1.2 × 10-4 s-1 (t½ of 95 min) which are respectively 50-fold and around 3-fold lower than for the plasmin-streptokinase complex. The acylated complex was stable as evidenced by binding to lysine-Sepharose. However, following an initial short lag phase, the acylated plasmin-STAR complex activated plasminogen at a similar rate as the unblocked complex, whereas the acylated plasmin-streptokinase complex did not activate plasminogen. These findings indicate that STAR, unlike streptokinase, dissociates from its acylated complex with plasmin in the presence of excess plasminogen. In agreement with this hypothesis, the time course of the lysis of a 125I-fibrin labeled plasma clot submerged in citrated human plasma, is similar for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR (50% clot lysis in 2 h requires 12 nM of each agent). The plasma clearances of STAR-related antigen following bolus injection in hamsters were 1.0 to 1.5 ml/min for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR, as a result of short initial half-lives of 2.0 to 2.5 min.The dissociation of the anisoylated plasmin-STAR complex and its consequent rapid clearance suggest that it has no apparent advantages as compared to free STAR for clinical thrombolysis.


2020 ◽  
Vol 14 (2) ◽  
pp. 88
Author(s):  
Emad Yousif

This article focus on the calculation of photodecomposition rate constant of PVC films that containing sulfadiazine tin(IV) complexes 1-3 as photostabilzers during UV radiation exposure. This constant calculated as a method for evaluating the efficiency of sulfadiazine tin(IV) complexes 1-3 when used as a PVC photostabilizers after 300 hours of irradiation. The experimental results showed that sulfadiazine tin(IV) complexes 1-3 have reduced the rate of photodecomposition constant value of PVC films significantly with comparison to PVC (blank).


2020 ◽  
Author(s):  
Adlai Katzenberg ◽  
Debdyuti Mukherjee ◽  
Peter J. Dudenas ◽  
Yoshiyuki Okamoto ◽  
Ahmet Kusoglu ◽  
...  

<p>Limitations in fuel cell electrode performance have motivated the development of ion-conducting binders (ionomers) with high gas permeability. Such ionomers have been achieved by copolymerization of perfluorinated sulfonic acid (PFSA) monomers with bulky and asymmetric monomers, leading to a glassy ionomer matrix with chemical and mechanical properties that differ substantially from common PFSA ionomers (e.g., Nafion™). In this study, we use perfluorodioxolane-based ionomers to provide fundamental insights into the role of the matrix chemical structure on the dynamics of structural and transport processes in ion-conducting polymers. Through <i>in-situ</i> water uptake measurements, we demonstrate that ionomer water sorption kinetics depend strongly on the properties and mass fraction of the matrix. As the PFSA mass fraction was increased from 0.26 to 0.57, the Fickian swelling rate constant decreased from 0.8 s<sup>-1</sup> to 0.2 s<sup>-1</sup>, while the relaxation rate constant increased from 3.1×10<sup>-3</sup> s<sup>-1</sup> to 4.0×10<sup>-3</sup>. The true swelling rate, in nm s<sup>-1</sup>, was determined by the chemical nature of the matrix; all dioxolane-containing materials exhibited swelling rates ~1.5 - 2 nm s<sup>-1</sup> compared to ~3 nm s<sup>-1</sup> for Nafion. Likewise, Nafion underwent relaxation at twice the rate of the fastest-relaxing dioxolane ionomer. Reduced swelling and relaxation kinetics are due to limited matrix segmental mobility of the dioxolane-containing ionomers. We demonstrate that changes in conductivity are strongly tied to the polymer relaxation, revealing the decoupled roles of initial swelling and relaxation on hydration, nanostructure, and ion transport in perfluorinated ionomers. </p>


Sign in / Sign up

Export Citation Format

Share Document