Short time dynamics of harmonic oscillator coherent states in anharmonic systems. I. One‐dimensional motion

1983 ◽  
Vol 78 (4) ◽  
pp. 1884-1894 ◽  
Author(s):  
Jürgen Brickmann
1995 ◽  
Vol 10 (12) ◽  
pp. 985-989 ◽  
Author(s):  
J. GRUNDBERG ◽  
T.H. HANSSON

We derive an su (1, 1) coherent state path integral formula for a system of two one-dimensional anyons in a harmonic potential. By a change of variables we transform this integral into a coherent states path integral for a harmonic oscillator with a shifted energy. The shift is the same as the one obtained for anyons by other methods. We justify the procedure by showing that the change of variables corresponds to an su (1, 1) version of the Holstein-Primakoff transformation.


2013 ◽  
Vol 10 (10) ◽  
pp. 1350056 ◽  
Author(s):  
R. ROKNIZADEH ◽  
H. HEYDARI

Three methods: complexifier, factorization and deformation, for construction of coherent states are presented for one-dimensional nonlinear harmonic oscillator (1D NLHO). Since by exploring the Jacobi polynomials [Formula: see text], bridging the difference between them is possible, we give here also the exact solution of Schrödinger equation of 1D NLHO in terms of Jacobi polynomials.


2005 ◽  
Vol 19 (28) ◽  
pp. 4219-4227 ◽  
Author(s):  
SHI-HAI DONG ◽  
M. LOZADA-CASSOU

We present exact solutions of the one-dimensional Schrödinger equation with a harmonic oscillator plus an inverse square potential. The ladder operators are constructed by the factorization method. We find that these operators satisfy the commutation relations of the generators of the dynamical group SU(1, 1). Based on those ladder operators, we obtain the analytical expressions of matrix elements for some related functions ρ and [Formula: see text] with ρ=x2. Finally, we make some comments on the Barut–Girardello coherent states and the hidden symmetry between E(x) and E(ix) by substituting x→ix.


2006 ◽  
Vol 21 (12) ◽  
pp. 2635-2644 ◽  
Author(s):  
Q. H. LIU ◽  
H. ZHUO

The Perelomov and the Barut–Girardello SU(1, 1) coherent states for harmonic oscillator in one-dimensional half space are constructed. Results show that the uncertainty products ΔxΔp for these two coherent states are bound from below [Formula: see text] that is the uncertainty for the ground state, and the mean values for position x and momentum p in classical limit go over to their classical quantities respectively. In classical limit, the uncertainty given by Perelomov coherent does not vanish, and the Barut–Girardello coherent state reveals a node structure when positioning closest to the boundary x = 0 which has not been observed in coherent states for other systems.


2013 ◽  
Vol 57 (1) ◽  
pp. 67-79
Author(s):  
Dušan Popov ◽  
Nicolina Pop ◽  
Simona Șimon

Abstract The information-theoretical entropy, also called the “classical” entropy, was introduced by Wehrl in terms of the Glauber coherent states (CSs) | z > , i.e. the CSs corresponding to the one-dimensional harmonic oscillator (HO-1D). In the present paper, we have focused our attention on the examination of the information-theoretical entropy, i.e. the Wehrl entropy, for both the pure and the mixed (thermal) states of some quantum oscillators.


Author(s):  
Nicolas Burq

Famous results by Rademacher, Kolmogorov and Paley and Zygmund state that random series on the torus enjoy better Lp bounds that the deterministic bounds. We present a natural extension of these harmonic analysis results to a partial-differential-equations setting. Specifically, we consider the one-dimensional nonlinear harmonic oscillator i∂tu + Δu − |x|2u = |u|r−1u, and exhibit examples for which the solutions are better behaved for randomly chosen initial data than would be predicted by the deterministic theory. In particular, on a deterministic point of view, the nonlinear harmonic oscillator equation is well posed in L2(ℝ) if and only if r ≤ 5. However, we shall prove that, for all nonlinearities |u|r−1u, r > 1, not only is the equation well posed for a large set of initial data whose Sobolev regularity is below L2, but also the flows enjoy very nice large-time probabilistic behaviour.These results are joint work with Laurent Thomann and Nikolay Tzvetkov.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xing-Yan Fan ◽  
Wei-Min Shang ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Jing-Ling Chen

As one of the fundamental traits governing the operation of quantum world, the uncertainty relation, from the perspective of Heisenberg, rules the minimum deviation of two incompatible observations for arbitrary quantum states. Notwithstanding, the original measurements appeared in Heisenberg’s principle are strong such that they may disturb the quantum system itself. Hence an intriguing question is raised: What will happen if the mean values are replaced by weak values in Heisenberg’s uncertainty relation? In this work, we investigate the question in the case of measuring position and momentum in a simple harmonic oscillator via designating one of the eigenkets thereof to the pre-selected state. Astonishingly, the original Heisenberg limit is broken for some post-selected states, designed as a superposition of the pre-selected state and another eigenkets of harmonic oscillator. Moreover, if two distinct coherent states reside in the pre- and post-selected states respectively, the variance reaches the lower bound in common uncertainty principle all the while, which is in accord with the circumstance in Heisenberg’s primitive framework.


2001 ◽  
Vol 16 (02) ◽  
pp. 91-98 ◽  
Author(s):  
JULES BECKERS ◽  
NATHALIE DEBERGH ◽  
JOSÉ F. CARIÑENA ◽  
GIUSEPPE MARMO

Previous λ-deformed non-Hermitian Hamiltonians with respect to the usual scalar product of Hilbert spaces dealing with harmonic oscillator-like developments are (re)considered with respect to a new scalar product in order to take into account their property of self-adjointness. The corresponding deformed λ-states lead to new families of coherent states according to the DOCS, AOCS and MUCS points of view.


Sign in / Sign up

Export Citation Format

Share Document