Study of two-dimensional laminar flow in a polar cavity by Ansys Fluent

2012 ◽  
Author(s):  
Alfred Sagayam VilaVandran ◽  
A. N. Darus
Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.


A class of two-dimensional channels, with walls whose radius of curvature is uniformly large relative to local channel width, is described, and the velocity field of laminar flow through these channels is obtained as a power series in the small curvature parameter. The leading term is the Jeffery-Hamel solution considered in part I, and it is shown here how the higher-order terms are found. Terms of the third approximation have been computed. The theory is applied to two examples, for one of which experimental results are available and confirm the theoretical values with fair accuracy.


The current article dispenses the numerical investigation of a two dimensional unsteady laminar flow of incompressible fluid passing a regular pentagonal obstacle in an open rectangular channel. The centre of attention of this work is the comparison of drag coefficients estimated for two distinct cases based on the orientation of face and corner of an obstacle against the flow direction. The numerical results shows that the corner – oriented obstacle bring about 42% larger value of drag coefficient at Re = 500 than face – oriented obstacle. The substantial growth in the expanse of vortex behind obstacle (presented as a function of fluid inertia 25 < Re < 500) is analyzed through the contours and streamline patterns of velocity field. The two eddies in the downstream become entirely unsymmetrical at Re = 500 for both the cases, whereas; the flow separation phenomena occurs a bit earlier in the face – oriented case at Re = 250. Two dimensional Pressure – Based – Segregated solver is employed to model the governing equations written in velocity and pressure fields. The numerical simulations of unsteady flow are presented for 50 seconds time frame with time step 0.01 by using one of the best available commercial based Computational Fluid Dynamics (CFD) software, ANSYS 15.0.


Author(s):  
Feng Hong ◽  
Jianping Yuan ◽  
Banglun Zhou ◽  
Zhong Li

Compared to non-cavitating flow, cavitating flow is much complex owing to the numerical difficulties caused by cavity generation and collapse. In the present work, cavitating flow around a two-dimensional Clark-Y hydrofoil is studied numerically with particular emphasis on understanding the cavitation structures and the shedding dynamics. A cavitation model, coupled with the mixture multi-phase approach, and the modified shear stress transport k-ω turbulence model has been developed and implemented in this study to calculate the pressure, velocity, and vapor volume fraction of the hydrofoil. The cavitation model has been implemented in ANSYS FLUENT platform. The hydrofoil has a fixed angle of attack of α = 8° with a Reynolds number of Re = 7.5 × 105. Simulations have been carried out for various cavitation numbers ranging from non-cavitating flows to the cloud cavitation regime. In particular, we compared the lift and drag coefficients, the cavitation dynamics, and the time-averaged velocity with available experimental data. The comparisons between the numerical and experimental results show that the present numerical method is capable to predict the formation, breakup, shedding, and collapse of the sheet/cloud cavity. The periodical formation, shedding, and collapse of sheet/cloud cavity lead to substantial increase in turbulent velocity fluctuations in the cavitation regimes around the hydrofoil and in the wake flow.


Sign in / Sign up

Export Citation Format

Share Document