scholarly journals CFD Analysis of Urban Canopy Flows Employing the V2F Model: Impact of Different Aspect Ratios and Relative Heights

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Nardecchia ◽  
Annalisa Di Bernardino ◽  
Francesca Pagliaro ◽  
Paolo Monti ◽  
Giovanni Leuzzi ◽  
...  

Computational fluid dynamics (CFD) is currently used in the environmental field to simulate flow and dispersion of pollutants around buildings. However, the closure assumptions of the turbulence usually employed in CFD codes are not always physically based and adequate for all the flow regimes relating to practical applications. The starting point of this work is the performance assessment of the V2F (i.e., v2¯ − f) model implemented in Ansys Fluent for simulating the flow field in an idealized array of two-dimensional canyons. The V2F model has been used in the past to predict low-speed and wall-bounded flows, but it has never been used to simulate airflows in urban street canyons. The numerical results are validated against experimental data collected in the water channel and compared with other turbulence models incorporated in Ansys Fluent (i.e., variations of both k-ε and k-ω models and the Reynolds stress model). The results show that the V2F model provides the best prediction of the flow field for two flow regimes commonly found in urban canopies. The V2F model is also employed to quantify the air-exchange rate (ACH) for a series of two-dimensional building arrangements, such as step-up and step-down configurations, having different aspect ratios and relative heights of the buildings. The results show a clear dependence of the ACH on the latter two parameters and highlight the role played by the turbulence in the exchange of air mass, particularly important for the step-down configurations, when the ventilation associated with the mean flow is generally poor.

2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2008 ◽  
Vol 599 ◽  
pp. 309-339 ◽  
Author(s):  
GUILLAUME A. BRÈS ◽  
TIM COLONIUS

Direct numerical simulations are performed to investigate the three-dimensional stability of compressible flow over open cavities. A linear stability analysis is conducted to search for three-dimensional global instabilities of the two-dimensional mean flow for cavities that are homogeneous in the spanwise direction. The presence of such instabilities is reported for a range of flow conditions and cavity aspect ratios. For cavities of aspect ratio (length to depth) of 2 and 4, the three-dimensional mode has a spanwise wavelength of approximately one cavity depth and oscillates with a frequency about one order of magnitude lower than two-dimensional Rossiter (flow/acoustics) instabilities. A steady mode of smaller spanwise wavelength is also identified for square cavities. The linear results indicate that the instability is hydrodynamic (rather than acoustic) in nature and arises from a generic centrifugal instability mechanism associated with the mean recirculating vortical flow in the downstream part of the cavity. These three-dimensional instabilities are related to centrifugal instabilities previously reported in flows over backward-facing steps, lid-driven cavity flows and Couette flows. Results from three-dimensional simulations of the nonlinear compressible Navier–Stokes equations are also reported. The formation of oscillating (and, in some cases, steady) spanwise structures is observed inside the cavity. The spanwise wavelength and oscillation frequency of these structures agree with the linear analysis predictions. When present, the shear-layer (Rossiter) oscillations experience a low-frequency modulation that arises from nonlinear interactions with the three-dimensional mode. The results are consistent with observations of low-frequency modulations and spanwise structures in previous experimental and numerical studies on open cavity flows.


Author(s):  
Efe Unal ◽  
Hojin Ahn ◽  
Esra Sorguven ◽  
M. Zafer Gul

Vortex structure in a corrugated channel has been studied with a PIV system measuring two-dimensional velocity fields at different locations and Reynolds numbers. The geometry of corrugation under investigation is the two-dimensional reflection of the circular cross-sectional stainless-steel flex pipe. The results show that turbulence caused by the corrugated wall affects the whole flow field in the channel even at low Reynolds number. The bulk flow field is rather chaotic in the entire channel. Moreover, the velocity vectors show significant interaction between the flow in the groove and the bulk flow. Vortex generated from the groove is very unstable and intermittent, and the vortex is not confined within the groove even at low Reynolds number. Vortex in the groove either migrates out of the groove without breaking up, or causes bursting flow from the groove to the bulk. In addition, intermittent and time-mean flow reversals are observed near the crest of the corrugation at low Reynolds number. Though the channel design is intended to be two-dimensional, flow structures in the groove appear to be three-dimensional at high Reynolds number while two-dimensional at low Reynolds number.


2020 ◽  
Vol 10 (11) ◽  
pp. 3803
Author(s):  
Jiuchao Qian ◽  
Yuhao Cheng ◽  
Rendong Ying ◽  
Peilin Liu

Indoor pedestrian localization measurement is a hot topic and is widely used in indoor navigation and unmanned devices. PDR (Pedestrian Dead Reckoning) is a low-cost and independent indoor localization method, estimating position of pedestrians independently and continuously. PDR fuses the accelerometer, gyroscope and magnetometer to calculate relative distance from starting point, which is mainly composed of three modules: step detection, stride length estimation and heading calculation. However, PDR is affected by cumulative error and can only work in two-dimensional planes, which makes it limited in practical applications. In this paper, a novel localization method V-PDR is presented, which combines VPR (Visual Place Recognition) and PDR in a loosely coupled way. When there is error between the localization result of PDR and VPR, the algorithm will correct the localization of PDR, which significantly reduces the cumulative error. In addition, VPR recognizes scenes on different floors to correct floor localization due to vertical movement, which extends application scene of PDR from two-dimensional planes to three-dimensional spaces. Extensive experiments were conducted in our laboratory building to verify the performance of the proposed method. The results demonstrate that the proposed method outperforms general PDR method in accuracy and can work in three-dimensional space.


1975 ◽  
Vol 26 (4) ◽  
pp. 243-253 ◽  
Author(s):  
J E Fackrell

SummaryThe time mean flow past a two-dimensional bluff body in a wind-tunnel is modelled by an adaptation of the numerical free-streamline method of Bearman and Fackrell. Provided the base pressure and separation positions are specified in advance, the method allows the calculation of the flow field outside the wake and in particular of the pressures on the wetted surface of the body. Good agreement of the predicted pressures with experimental results is obtained for a flat plate, wedge and circular cylinder at various blockage ratios. In addition to predicting the confined flow, it is shown that a free-air base pressure can be simply deduced from the confined base pressure. With an assumption that the separation positions are unaffected by blockage, this allows the free-air flow field to be calculated. By using an analogy to Roshko’s Strouhal number, which has been found to be invariant under constraint, a free-air Strouhal number can also be deduced.


2021 ◽  
Vol 22 (7) ◽  
pp. 3793
Author(s):  
Sophie Blinker ◽  
Jocelyne Vreede ◽  
Peter Setlow ◽  
Stanley Brul

Bacillus subtilis forms dormant spores upon nutrient depletion. Germinant receptors (GRs) in spore’s inner membrane respond to ligands such as L-alanine, and trigger spore germination. In B. subtilis spores, GerA is the major GR, and has three subunits, GerAA, GerAB, and GerAC. L-Alanine activation of GerA requires all three subunits, but which binds L-alanine is unknown. To date, how GRs trigger germination is unknown, in particular due to lack of detailed structural information about B subunits. Using homology modelling with molecular dynamics (MD) simulations, we present structural predictions for the integral membrane protein GerAB. These predictions indicate that GerAB is an α-helical transmembrane protein containing a water channel. The MD simulations with free L-alanine show that alanine binds transiently to specific sites on GerAB. These results provide a starting point for unraveling the mechanism of L-alanine mediated signaling by GerAB, which may facilitate early events in spore germination.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 139-148
Author(s):  
Shiyang Liu ◽  
Xuefu Zhang ◽  
Feng Gao ◽  
Liangwen Wei ◽  
Qiang Liu ◽  
...  

AbstractWith the rapid development of traffic infrastructure in China, the problem of crystal plugging of tunnel drainage pipes becomes increasingly salient. In order to build a mechanism that is resilient to the crystal plugging of flocking drainage pipes, the present study used the numerical simulation to analyze the two-dimensional flow field distribution characteristics of flocking drainage pipes under different flocking spacings. Then, the results were compared with the laboratory test results. According to the results, the maximum velocity distribution in the flow field of flocking drainage pipes is closely related to the transverse distance h of the fluff, while the longitudinal distance h of the fluff causes little effect; when the transverse distance h of the fluff is less than 6.25D (D refers to the diameter of the fluff), the velocity between the adjacent transverse fluffs will be increased by more than 10%. Moreover, the velocity of the upstream and downstream fluffs will be decreased by 90% compared with that of the inlet; the crystal distribution can be more obvious in the place with larger velocity while it is less at the lower flow rate. The results can provide theoretical support for building a mechanism to deal with and remove the crystallization of flocking drainage pipes.


Sign in / Sign up

Export Citation Format

Share Document