Lateral heating of SiO2/Si: Interfacial Si structure change causing tunneling current reduction

2012 ◽  
Vol 100 (17) ◽  
pp. 171602 ◽  
Author(s):  
Zhi Chen ◽  
Pang-Leen Ong ◽  
Yichun Wang ◽  
Lei Han
1992 ◽  
Vol 19 (1-4) ◽  
pp. 721-724
Author(s):  
L. Haspeslagh ◽  
G. Vanhorebeek ◽  
L. Deferm

Author(s):  
Oliver C. Wells ◽  
Mark E. Welland

Scanning tunneling microscopes (STM) exist in two versions. In both of these, a pointed metal tip is scanned in close proximity to the specimen surface by means of three piezos. The distance of the tip from the sample is controlled by a feedback system to give a constant tunneling current between the tip and the sample. In the low-end STM, the system has a mechanical stability and a noise level to give a vertical resolution of between 0.1 nm and 1.0 nm. The atomic resolution STM can show individual atoms on the surface of the specimen.A low-end STM has been put into the specimen chamber of a scanning electron microscope (SEM). The first objective was to investigate technological problems such as surface profiling. The second objective was for exploratory studies. This second objective has already been achieved by showing that the STM can be used to study trapping sites in SiO2.


Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


Author(s):  
J. A. Panitz

Tunneling is a ubiquitous phenomenon. Alpha particle disintegration, the Stark effect, superconductivity in thin films, field-emission, and field-ionization are examples of electron tunneling phenomena. In the scanning tunneling microscope (STM) electron tunneling is used as an imaging modality. STM images of flat surfaces show structure at the atomic level. However, STM images of large biological species deposited onto flat surfaces are disappointing. For example, unstained virus particles imaged in the STM do not resemble their TEM counterparts.It is not clear how an STM image of a biological species is formed. Most biological species are large compared to the nominal electrode separation of ∼ 1nm that is required for electron tunneling. To form an image of a biological species, the tunneling electrodes must be separated by a distance that would normally be too large for a tunneling current to be observed.


Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


2020 ◽  
Vol 140 (3) ◽  
pp. 175-183
Author(s):  
Kengo Kawauchi ◽  
Hayato Higa ◽  
Hiroki Watanabe ◽  
Keisuke Kusaka ◽  
Jun-ichi Itoh

2012 ◽  
Vol 30 (2) ◽  
pp. 138-158
Author(s):  
András Csanády
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document