A microlens array based on polymer network liquid crystal

2013 ◽  
Vol 113 (5) ◽  
pp. 053105 ◽  
Author(s):  
Miao Xu ◽  
Zuowei Zhou ◽  
Hongwen Ren ◽  
Seung Hee Lee ◽  
Qionghua Wang
Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 739 ◽  
Author(s):  
Cheng-Kai Liu ◽  
Wei-Hsuan Chen ◽  
Chung-Yu Li ◽  
Ko-Ting Cheng

The methods to enhance contrast ratios (CRs) in scattering-type transflective liquid crystal displays (ST-TRLCDs) based on polymer-network liquid crystal (PNLC) cells are investigated. Two configurations of ST-TRLCDs are studied and are compared with the common ST-TRLCDs. According to the comparisons, CRs are effectively enhanced by assembling a linear polarizer at the suitable position to achieve better dark states in the transmissive and reflective modes of the reported ST-TRLCDs with the optimized configuration, and its main trade-off is the loss of brightness in the reflective modes. The PNLC cell, which works as an electrically switchable polarizer herein, can be a PN-90° twisted nematic LC (PN-90° TNLC) cell or a homogeneous PNLC (H-PNLC) cell. The optoelectric properties of PN-90° TNLC and those of H-PNLC cells are compared in detail, and the results determine that the ST-TRLCD with the optimized configuration using an H-PNLC cell can achieve the highest CR. Moreover, no quarter-wave plate is used in the ST-TRLCD with the optimized configuration, so a parallax problem caused by QWPs can be solved. Other methods for enhancing the CRs of the ST-TRLCDs are also discussed.


2009 ◽  
Vol 511 (1) ◽  
pp. 298/[1768]-308/[1778]
Author(s):  
Motoi Kinoshita ◽  
Tomohiro Kobayashi ◽  
Atsushi Shishido ◽  
Tomiki Ikeda

2004 ◽  
Vol 31 (9) ◽  
pp. 1265-1270 ◽  
Author(s):  
S. Krishna Prasad ◽  
Geetha G. Nair ◽  
Gurumurthy Hegde ◽  
Uma S. Hiremath ◽  
C. V. Yelamaggad

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6193
Author(s):  
Kyosun Ku ◽  
Kyohei Hisano ◽  
Kyoko Yuasa ◽  
Tomoki Shigeyama ◽  
Norihisa Akamatsu ◽  
...  

Chiral nematic (N*) liquid crystal elastomers (LCEs) are suitable for fabricating stimuli-responsive materials. As crosslinkers considerably affect the N*LCE network, we investigated the effects of crosslinking units on the physical properties of N*LCEs. The N*LCEs were synthesized with different types of crosslinkers, and the relationship between the N*LC polymeric system and the crosslinking unit was investigated. The N*LCEs emit color by selective reflection, in which the color changes in response to mechanical deformation. The LC-type crosslinker decreases the helical twisting power of the N*LCE by increasing the total molar ratio of the mesogenic compound. The N*LCE exhibits mechano-responsive color changes by coupling the N*LC orientation and the polymer network, where the N*LCEs exhibit different degrees of pitch variation depending on the crosslinker. Moreover, the LC-type crosslinker increases the Young’s modulus of N*LCEs, and the long methylene chains increase the breaking strain. An analysis of experimental results verified the effect of the crosslinkers, providing a design rationale for N*LCE materials in mechano-optical sensor applications.


2014 ◽  
Vol 34 (6) ◽  
pp. 0623001
Author(s):  
赵祥杰 Zhao Xiangjie ◽  
刘仓理 Liu Cangli ◽  
曾建成 Zeng Jiancheng ◽  
张大勇 Zhang Dayong ◽  
骆永全 Luo Yongquan

Crystals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 431 ◽  
Author(s):  
Li-Lan Tian ◽  
Fan Chu ◽  
Hu Dou ◽  
Lei Li ◽  
Qiong-Hua Wang

An electrically tunable-focusing liquid crystal (LC) microlens array exhibiting a wide-range tunable focal length is proposed. The lower substrate has strip indium tin oxide (ITO) electrodes, the upper substrate has periodic ITO electrodes with a certain gap coated on the inner surface., and an LC microlens is generated between the two strip electrodes. For each LC microlens, the gap between the top planar electrodes is directly above the center of the microlens. Unlike the conventional LC lens, the individual LC microlens is not coated with ITO electrodes on the central part of its upper and lower substrates, which helps to maintain the LC’s horizontal orientation. In the voltage-off state, the focal length of the microlens array is infinity because of the homogeneous LC alignment. At a given operating voltage, an ideal gradient refractive index distribution is induced over the homogeneous LC layer, which leads to the focusing effect. The simulation result shows that the focal length of the LC microlens could be gradually drawn to 0.381 mm with a change of voltage.


Sign in / Sign up

Export Citation Format

Share Document