scholarly journals Multivalent ion effects on electrostatic stability of virus-like nano-shells

2013 ◽  
Vol 139 (15) ◽  
pp. 154709 ◽  
Author(s):  
Leili Javidpour ◽  
Anže Lošdorfer Božič ◽  
Ali Naji ◽  
Rudolf Podgornik
2021 ◽  
Vol 6 (1) ◽  
pp. 22
Author(s):  
Malibongwe S. Manono ◽  
Katlego Matibidi ◽  
Kirsten C. Corin ◽  
Catherine K. Thubakgale ◽  
Iyiola O. Otunniyi ◽  
...  

Inorganic electrolytes present in the process water used during froth flotation may have both beneficial and detrimental effects. These effects are said to be ion specific, as some ions may result in enhanced froth stability, increased mineral recoveries and decreased concentrate grades, while others may bring the opposite effects. Onsite process water quality variations have intensified the need to understand the relationship between inorganic electrolytes and flotation reagents on flotation performance. The use of mixtures of thiol collectors in sulfide flotation is a common practice across the globe; however, very few investigations have considered these in process waters of varying compositions. This study considers the effect of common cations, Na+ and Ca2+, in process water on the behavior of mixtures of thiol collectors. Single-salt solutions of NaCl and CaCl2 at an ionic strength of 0.0213 mol·dm−3 were used to investigate the behavior of mixtures of two thiol collectors. These were carefully selected to understand how mixtures of thiol collectors behave in the presence of a monovalent cation versus a polyvalent cation. Bench-scale froth flotation tests were conducted using a Cu-Ni-PGM ore from the Merensky Reef. The results have shown that the divalent cation, Ca2+, resulted in higher %Cu and %Ni recoveries at all collector mixtures compared to the monovalent cation, Na+. The concentrate grades were, however, slightly compromised, as slightly more gangue reported to the concentrate in the presence of Ca2+. This behavior is attributed to the effect of polyvalent cations on bubble coalescence and froth stability.


2021 ◽  
Vol 35 (3) ◽  
pp. 2144-2152
Author(s):  
Yue Zhao ◽  
Zhaoyi Dai ◽  
Xin Wang ◽  
Chong Dai ◽  
Samridhdi Paudyal ◽  
...  
Keyword(s):  

Author(s):  
Madeline G. Esposito ◽  
Jack E. Manuel ◽  
Aymeric Privat ◽  
T. Patrick Xiao ◽  
Diana Garland ◽  
...  

2021 ◽  
pp. 2100232
Author(s):  
Shuang Wei ◽  
Zechuan Zhang ◽  
Weibin Dong ◽  
Ting Liang ◽  
Junyi Ji ◽  
...  

1987 ◽  
Vol 37 (1) ◽  
pp. 107-115
Author(s):  
B. Ghosh ◽  
K. P. Das

The method of multiple scales is used to derive a nonlinear Schrödinger equation, which describes the nonlinear evolution of electron plasma ‘slow waves’ propagating along a hot cylindrical plasma column, surrounded by a dielectric medium and immersed in an essentially infinite axial magnetic field. The temperature is included as well as mobile ion effects for ail possible modes of propagation along the magnetic field. From this equation the condition for modulational instability for a uniform plasma wave train is determined.


Sign in / Sign up

Export Citation Format

Share Document