Rate-accelerating metal ion effects on decarboxylation of α-keto acids by a thiazolium ton bearing a metal binding site

Author(s):  
Tatsuya Nabeshima ◽  
Kazuhiko Moriyama ◽  
Yumihiko Yano
2019 ◽  
Vol 21 (20) ◽  
pp. 10238-10243 ◽  
Author(s):  
Austin Gamble Jarvi ◽  
Timothy F. Cunningham ◽  
Sunil Saxena

A native paramagnetic metal binding site in a protein is located with less than 2 Å resolution by a combination of double histidine (dHis) based Cu2+ labeling and long range distance measurements by EPR.


2020 ◽  
Vol 21 (22) ◽  
pp. 8794
Author(s):  
Aleksandra Marciniak ◽  
Weronika Witak ◽  
Giuseppina Sabatino ◽  
Anna Maria Papini ◽  
Justyna Brasuń

Somatostatin analogues are useful pharmaceuticals in peptide receptor radionuclide therapy. In previous studies, we analyzed a new bicyclic somatostatin analogue (BCS) in connection with Cu(II) ions. Two characteristic sites were present in the peptide chain: the receptor- and the metal-binding site. We have already shown that this ligand can form very stable imidazole complexes with the metal ion. In this work, our aim was to characterize the intramolecular interaction that occurs in the peptide molecule. Therefore, we analyzed the coordination abilities of two cyclic ligands, i.e., P1 only with the metal binding site and P2 with both sites, but without the disulfide bond. Furthermore, we used magnetic circular dichroism (MCD) spectroscopy to better understand the coordination process. We applied this method to analyze spectra of P1, P2, and BCS, which we have described previously. Additionally, we analyzed the MCD spectra of P3 ligand, which has only the receptor binding site in its structure. We have unequivocally shown that the presence of the Phe-Trp-Lys-Thr motif and the disulfide bond significantly increases the metal binding efficiency.


2021 ◽  
Vol 22 (14) ◽  
pp. 7288
Author(s):  
Francisco Andrés Peralta ◽  
J. Pablo Huidobro-Toro ◽  
Raúl Mera-Adasme

To ascertain the role of Zn(II) as an allosteric modulator on P2X4R, QM/MM molecular dynamic simulations were performed on the WT and two P2X4R mutants suggested by previous electrophysiological data to affect Zn(II) binding. The Gibbs free energy for the reduction of the putative P2X4R Zn(II) binding site by glutathione was estimated at −22 kcal/mol. Simulations of the WT P2X4R head domain revealed a flexible coordination sphere dominated by an octahedral geometry encompassing C126, N127, C132, C149, C159 and a water molecule. The C132A mutation disrupted the metal binding site, leading to a coordination sphere with a majority of water ligands, and a displacement of the metal ion towards the solvent. The C132A/C159A mutant exhibited a tendency towards WT-like stability by incorporating the R148 backbone to the coordination sphere. Thus, the computational findings agree with previous experimental data showing Zn(II) modulation for the WT and C132A/C159A variants, but not for the C132A mutant. The results provide molecular insights into the nature of the Zn(II) modulation in P2X4R, and the effect of the C132A and C132A/C159A mutations, accounting for an elusive modulation mechanism possibly occurring in other extracellular or membrane protein.


2014 ◽  
Vol 70 (5) ◽  
pp. 1281-1288 ◽  
Author(s):  
Hyun Ku Yeo ◽  
Young Woo Park ◽  
Jae Young Lee

The iron-dependent regulator (IdeR) is a metal ion-activated transcriptional repressor that regulates the expression of genes encoding proteins involved in iron uptake to maintain metal-ion homeostasis. IdeR is a functional homologue of the diphtheria toxin repressor (DtxR), and both belong to the DtxR/MntR family of metalloregulators. The structure of Fe2+-bound IdeR (TA0872) fromThemoplasma acidophilumwas determined at 2.1 Å resolution by X-ray crystallography using single-wavelength anomalous diffraction. The presence of Fe2+, which is the true biological activator of IdeR, in the metal-binding site was ascertained by the use of anomalous difference electron-density maps using diffraction data collected at the Fe absorption edge. Each DtxR/IdeR subunit contains two metal ion-binding sites separated by 9 Å, labelled the primary and ancillary sites, whereas the crystal structures of IdeR fromT. acidophilumshow a binuclear iron cluster separated by 3.2 Å, which is novel toT. acidophilumIdeR. The metal-binding site analogous to the primary site in DtxR was unoccupied, and the ancillary site was occupied by binuclear clustered ions. This difference suggests thatT. acidophilumIdeR and its closely related homologues are regulated by a mechanism distinct from that of either DtxR or MntR.T. acidophilumIdeR was also shown to have a metal-dependent DNA-binding property by electrophoretic mobility shift assay.


2002 ◽  
Vol 184 (8) ◽  
pp. 2300-2304 ◽  
Author(s):  
Yong-Hwan Lee ◽  
Michael R. Dorwart ◽  
Karsten R. O. Hazlett ◽  
Ranjit K. Deka ◽  
Michael V. Norgard ◽  
...  

ABSTRACT We previously demonstrated that Treponema pallidum TroA is a periplasmic metal-binding protein (MBP) with a distinctive alpha-helical backbone. To better understand the mechanisms of metal binding and release by TroA, we determined the crystal structure of the apoprotein at a resolution of 2.5 Å and compared it to that of the Zn(II)-bound form (Protein Data Bank accession code 1toa). apo-TroA shows a conformation even more closed than that of its Zn(II)-bound counterpart due to a 4° tilt of the C-terminal domain (residues 190 through 308) about an axis parallel to the poorly flexible backbone helix. This domain tilting pushes two loops (residues 248 through 253 and 277 through 286) towards the metal-binding site by more than 1 Å, resulting in an unfavorable interaction of I251 with D66. To avoid this contact, D66 shifts towards H68, one of the four Zn(II)-coordinating residues. The approach of this negative charge coincides with the flipping of the imidazole side chain of H68, resulting in the formation of a new hydrogen bond. The conformational change of H68, along with a slight rearrangement of D279, a C-terminal domain Zn(II)-coordinating residue, distorts the metal-binding site geometry, presumably causing the release of the bound metal ion. Ligand binding and release by TroA, and presumably by other members of the MBP cluster, differs from the “Venus flytrap” mechanism utilized by bacterial nonmetal solute-binding receptors.


Sign in / Sign up

Export Citation Format

Share Document