scholarly journals Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites

2014 ◽  
Vol 116 (13) ◽  
pp. 134104 ◽  
Author(s):  
Jun-Wei Zha ◽  
Fang Sun ◽  
Si-Jiao Wang ◽  
Dongrui Wang ◽  
Xiang Lin ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3325
Author(s):  
Paweł Smoleń ◽  
Tomasz Czujko ◽  
Zenon Komorek ◽  
Dominik Grochala ◽  
Anna Rutkowska ◽  
...  

This paper investigates the effect of multiwalled carbon nanotubes on the mechanical and electrical properties of epoxy resins and epoxy composites. The research concerns multiwalled carbon nanotubes obtained by catalytic chemical vapor deposition, subjected to purification processes and covalent functionalization by depositing functional groups on their surfaces. The study included the analysis of the change in DC resistivity, tensile strength, strain, and Young’s modulus with the addition of carbon nanotubes in the range of 0 to 2.5 wt.%. The effect of agents intended to increase the affinity of the nanomaterial to the polymer on the aforementioned properties was also investigated. The addition of functionalized multiwalled carbon nanotubes allowed us to obtain electrically conductive materials. For all materials, the percolation threshold was obtained with 1% addition of multiwalled carbon nanotubes, and filling the polymer with a higher content of carbon nanotubes increased its conductivity. The use of carbon nanotubes as polymer reinforcement allows higher values of tensile strength and a higher strain percentage to be achieved. In contrast, Young’s modulus values did not increase significantly, and higher nanofiller percentages resulted in a drastic decrease in the values of the abovementioned properties.


2015 ◽  
Vol 25 (31) ◽  
pp. 4985-4993 ◽  
Author(s):  
Lakshmy Pulickal Rajukumar ◽  
Manuel Belmonte ◽  
John Edward Slimak ◽  
Ana Laura Elías ◽  
Eduardo Cruz-Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document