scholarly journals Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices

2015 ◽  
Vol 106 (2) ◽  
pp. 023115 ◽  
Author(s):  
R. Samnakay ◽  
C. Jiang ◽  
S. L. Rumyantsev ◽  
M. S. Shur ◽  
A. A. Balandin
2011 ◽  
Vol 123 (20) ◽  
pp. 4750-4753 ◽  
Author(s):  
Francesca Maffei ◽  
Paolo Betti ◽  
Damiano Genovese ◽  
Marco Montalti ◽  
Luca Prodi ◽  
...  

1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


1996 ◽  
Vol 424 ◽  
Author(s):  
R. E. I. Schropp ◽  
K. F. Feenstra ◽  
C. H. M. Van Der Werf ◽  
J. Holleman ◽  
H. Meiling

AbstractWe present the first thin film transistors (TFTs) incorporating a low hydrogen content (5 - 9 at.-%) amorphous silicon (a-Si:H) layer deposited by the Hot-Wire Chemical Vapor Deposition (HWCVD) technique. This demonstrates the possibility of utilizing this material in devices. The deposition rate by Hot-Wire CVD is an order of magnitude higher than by Plasma Enhanced CVD. The switching ratio for TFTs based on HWCVD a-Si:H is better than 5 orders of magnitude. The field-effect mobility as determined from the saturation regime of the transfer characteristics is still quite poor. The interface with the gate dielectric needs further optimization. Current crowding effects, however, could be completely eliminated by a H2 plasma treatment of the HW-deposited intrinsic layer. In contrast to the PECVD reference device, the HWCVD device appears to be almost unsensitive to bias voltage stressing. This shows that HW-deposited material might be an approach to much more stable devices.


2012 ◽  
Vol 51 ◽  
pp. 045101 ◽  
Author(s):  
Hyung Goo Park ◽  
Sukju Hwang ◽  
Juhwan Lim ◽  
Duck-Hwan Kim ◽  
In Sang Song ◽  
...  

2011 ◽  
Vol 1287 ◽  
Author(s):  
Anupama Mallikarjunan ◽  
Laura M Matz ◽  
Andrew D Johnson ◽  
Raymond N Vrtis ◽  
Manchao Xiao ◽  
...  

ABSTRACTThe electrical and physical quality of gate and passivation dielectrics significantly impacts the device performance of thin film transistors (TFTs). The passivation dielectric also needs to act as a barrier to protect the TFT device. As low temperature TFT processing becomes a requirement for novel applications and plastic substrates, there is a need for materials innovation that enables high quality plasma enhanced chemical vapor deposition (PECVD) gate dielectric deposition. In this context, this paper discusses structure-property relationships and strategies for precursor development in silicon nitride, silicon oxycarbide (SiOC) and silicon oxide films. Experiments with passivation SiOC films demonstrate the benefit of a superior precursor (LkB-500) and standard process optimization to enable lower temperature depositions. For gate SiO2 deposition (that are used with polysilicon TFTs for example), organosilicon precursors containing different types and amounts of Si, C, O and H bonding were experimentally compared to the industry standard TEOS (tetraethoxysilane) at different process conditions and temperatures. Major differences were identified in film quality especially wet etch rate or WER (correlating to film density) and dielectric constant (k) values (correlating to moisture absorption). Gate quality SiO2 films can be deposited by choosing precursors that can minimize residual Si-OH groups and enable higher density stable moisture-free films. For e.g., the optimized precursor AP-LTO® 770 is clearly better than TEOS for low temperature PECVD depositions based on density, WER, k charge density (measured by flatband voltage or Vfb); and leakage and breakdown voltage (Vbd) measurements. The design and development of such novel precursors is a key factor to successfully enable manufacturing of advanced low temperature processed devices.


2021 ◽  
Author(s):  
Harry Ramza ◽  
Emas Fiqry Nurdwiprasetio ◽  
Aditya Ervansyah ◽  
Sugianto ◽  
Saeed Salem Bahashwan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document