scholarly journals Models for daily global solar radiation for the Caribbean island of Trinidad

2015 ◽  
Vol 7 (1) ◽  
pp. 013132 ◽  
Author(s):  
Keith De Souza ◽  
Roger Andrews
Solar Energy ◽  
2004 ◽  
Author(s):  
Ramiro L. Rivera ◽  
Karim Altaii

Solar radiation was measured and recorded on a 5-minute, hourly and daily basis at a number of sites on the Caribbean island of Puerto Rico (located from 18° to 18° 30’N latitude and from 65° 30’ to 67° 15’W longitude) over a 24 calendar month time frame. The global solar radiation was measured at four sites (namely: Aguadilla, Ponce, Gurabo, and San Juan). The global solar radiation data was measured by an Eppley Precision Spectral Pyranometer (model PSP) mounted on a horizontal surface. This pyranometer is sensitive to solar radiation in the range of 0.285 ≤ λ ≤ 2.8 μm wavelengths. Statistical analysis such as the daily average, monthly average hourly, monthly average daily, and annual average daily global radiation are presented in this paper. Despite its small size, a 13 percent variation in the global solar radiation has been observed within the island. Reasonable solar radiation values, for solar energy conversion system installation, seem to exist at and possibly around Aguadilla.


Solar Energy ◽  
2004 ◽  
Author(s):  
Karim Altaii ◽  
Ramiro L. Rivera

Ultraviolet solar radiation was measured and recorded on a 5-minute, hourly and daily basis at four sites on the Caribbean island of Puerto Rico (located from 18° to 18° 30’N latitude and from 65° 30’ to 67° 15’W longitude) over a 24 calendar month time frame. Data were measured by an Eppley Total Ultraviolet Radiometer (TUVR) mounted on a horizontal surface (0.285 ≤ λ ≤ 0.385 μm wavelengths). This data presents the first published data on ultraviolet radiation over Puerto Rico. The data sheds new light on the ultraviolet radiation characteristics of this tropical island. Characteristics such as the daily average, monthly average hourly, monthly average daily, and annual average daily ultraviolet radiation are presented. The ratio of the monthly average daily ultraviolet radiation to the monthly average daily global radiation varied between 0.0476 and 0.0498, with a mean value of 0.0487 ± 0.0009. A regression correlation between ultraviolet and global radiation on an hourly basis is also developed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 383
Author(s):  
Dawid Szatten ◽  
Mirosław Więcław

Global solar radiation is an important atmospheric stimulus affecting the human body and has been used in heliotherapy for years. In addition to environmental factors, the effectiveness of global solar radiation is increasingly influenced by human activity. This research was based on the use of heliographic and actinometric data (1996–2015) and the model distribution of global solar radiation to determine the possibility of heliotherapy with the example of two health resorts: Cieplice and Kołobrzeg (Poland). The solar features of health resorts (sunshine duration and global solar radiation) were characterized, and they were correlated with the spatial distribution of global solar radiation data obtained with the use of remote sensing techniques (System for Automated Geoscientific Analyzes-SAGA), including COoRdination and INformation on the Environment (CORINE) land cover (CLC) data. Using the maximum entropy model (MaxEnt), a qualitative and quantitative relationship between morphometric parameters and solar climate features was demonstrated for individual land cover types. Studies have shown that the period of late spring and summer, due to the climate’s solar features, is advisable for the use of heliotherapy. The human activity that determines the land cover is the main element influencing the spatial differentiation of the possibilities of using this form of health treatment. It also affects topographic indicators shown as significant in the MaxEnt predictive model. In general, areas with high openness were shown as predisposed for health treatment using global solar radiation, which is not consistent with areas commonly used for heliotherapy. The conducted research has shown the need for an interdisciplinary approach to the issue of heliotherapy, which will contribute to the optimization of the use of this form of health treatment from the perspective of climate change and human pressure.


Sign in / Sign up

Export Citation Format

Share Document