Influence of the field size in the response of the radiochromic film EBT3 and its impact on the measurement of the total scatter factors in small fields

2016 ◽  
Author(s):  
Fátima Escarcia-Castillo ◽  
Olivia Amanda García-Garduño ◽  
Alfredo Herrera-González
2019 ◽  
Vol 25 (2) ◽  
pp. 101-110
Author(s):  
Itumeleng Setilo ◽  
Oluwaseyi Michael Oderinde ◽  
Freek Cp du Plessis

Abstract Introduction: Small fields photon dosimetry is associated with many problems. Using the right detector for measurement plays a fundamental role. This study investigated the measurement of relative output for small photon fields with different detectors. It was investigated for three-photon beam energies at SSDs of 90, 95, 100 and 110 cm. As a benchmark, the Monte Carlo simulation was done to calculate the relative output of these small photon beams for the dose in water. Materials and Methods: 6, 10 and 15 MV beams were delivered from a Synergy LINAC equipped with an Agility 160 multileaf collimator (MLC). A CC01 ion chamber, EFD-3G diode, PTW60019 microdiamond, EBT2 radiochromic film, and EDR2 radiographic film were used to measure the relative output of the linac. Measurements were taken in water for the CC01 ion chamber, EFD-3G diode, and the PTW60019. Films were measured in water equivalent RW3 phantom slabs. Measurements were made for 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5 and a reference field of 10 × 10 cm2. Field sizes were defined at 100cm SSD. Relative output factors were also compared with Monte Carlo (MC) simulation of the LINAC and a water phantom model. The influence of voxel size was also investigated for relative output measurement. Results and Discussion: The relative output factor (ROF) increased with energy for all fields large enough to have lateral electronic equilibrium (LEE). This relation broke down as the field sizes decreased due to the onset of lateral electronic disequilibrium (LED). The high-density detector, PTW60019 gave the highest ROF for the different energies, with the less dense CC01 giving the lowest ROFs. Conclusion: These are results compared to MC simulation, higher density detectors give higher ROF values. Relative to water, the ROF measured with the air-chamber remained virtually unchanged. The ROFs, as measured in this study showed little variation due to increased SSDs. The effect of voxel size for the Monte Carlo calculations in water does not lead to significant ROF variation over the small fields studied.


2018 ◽  
Vol 17 (3) ◽  
pp. 289-291 ◽  
Author(s):  
Qurat-ul-ain Shamsi ◽  
Saeed Ahmad Buzdar ◽  
Atia Atiq ◽  
Maria Atiq ◽  
Saima Altaf ◽  
...  

AbstractAimsThis exploration is intended to measure tissue maximum ratios (TMRs) in smaller fields through CC01 detector and to compare CC01 measured TMRs with Pinnacle treatment planning software (TPS) calculated TMRs.Materials and methodsCC01 compact chamber detector was used to measure TMR in water phantom for 6 and 18 MV beam delivered from Varian linear accelerator. Pinnacle TPS was employed in this study to calculate TMR from the measured percentage depth doses data. CC01 measured TMR data was compared with the calculated TMR data at depths from 5 to 20 cm for field sizes varying from 1 to 10 cm2.ResultsFor the smallest given field size of 1 cm2, CCO1 measured 13·95% higher TMR value for 18 MV beam than that for 6 MV beam. At 20 cm depth for 1 cm2 field size, TMR due to 18 MV beam was 52·4% higher than the TMR due to 6 MV beam. For 6 MV beam, the maximum difference appeared between the measured TMR and pinnacle calculated TMR was 2·8% and for 18 MV beam, the maximum difference was 4%.ConclusionFor both 6 and 18 MV beam, there was good agreement between CC01 measured and Pinnacle calculated TMRs for the field sizes ranging from 1 to 10 cm2. This exploration can be extended to the determination of other dosimetric parameters like TARs, TPRs in small fields.


Author(s):  
Gopinath Mamballikalam ◽  
S Senthilkumar ◽  
P. M. Jayadevan ◽  
R. C. Jaon bos ◽  
P. M. Ahamed Basith ◽  
...  

Abstract Purpose: This study aims to evaluate dosimetric parameters like percentage depth dose, dosimetric field size, depth of maximum dose surface dose, penumbra and output factors measured using IBA CC01 pinpoint chamber, IBA stereotactic field diode (SFD), PTW microDiamond against Monte Carlo (MC) simulation for 6 MV flattening filter-free small fields. Materials and Methods: The linear accelerator used in the study was a Varian TrueBeam® STx. All field sizes were defined by jaws. The required shift to effective point of measurement was given for CC01, SFD and microdiamond for depth dose measurements. The output factor of a given field size was taken as the ratio of meter readings normalised to 10 × 10 cm2 reference field size without applying any correction to account for changes in detector response. MC simulation was performed using PRIMO (PENELOPE-based program). The phase space files for MC simulation were adopted from the MyVarian Website. Results and Discussion: Variations were seen between the detectors and MC, especially for fields smaller than 2 × 2 cm2 where the lateral charge particle equilibrium was not satisfied. Diamond detector was seen as most suitable for all measurements above 1 × 1 cm2. SFD was seen very close to MC results except for under-response in output factor measurements. CC01 was observed to be suitable for field sizes above 2 × 2 cm2. Volume averaging effect for penumbra measurements in CC01 was observed. No detector was found suitable for surface dose measurement as surface ionisation was different from surface dose due to the effect of perturbation of fluence. Some discrepancies in measurements and MC values were observed which may suggest effects of source occlusion, shift in focal point or mismatch between real accelerator geometry and simulation geometry. Conclusion: For output factor measurement, TRS483 suggested correction factor needs to be applied to account for the difference in detector response. CC01 can be used for field sizes above 2 × 2 cm2 and microdiamond detector is suitable for above 1 × 1 cm2. Below these field sizes, perturbation corrections and volume averaging corrections need to be applied.


2020 ◽  
Vol 26 (4) ◽  
pp. 235-242
Author(s):  
Mohamad Reza Bayatiani ◽  
Fatemeh Fallahi ◽  
Akbar Aliasgharzadeh ◽  
Mahdi Ghorbani ◽  
Benyamin Khajetash ◽  
...  

AbstractObjective: The main purpose of this study is to calculate the effective source to surface distance (SSDeff) of small and large electron fields in 10, 15, and 18 MeV energies, and to investigate the effect of SSD on the cutout factor for electron beams a linear accelerator. The accuracy of different dosimeters is also evaluated.Materials and methods: In the current study, Elekta Precise linear accelerator was used in electron beam energies of 10, 15, and 18 MeV. The measurements were performed in a PTW water phantom (model MP3-M). A Semiflex and Advanced Markus ionization chambers and a Diode E detector were used for dosimetry. SSDeff in 100, 105, 110, 115, and 120 cm SSDs for 1.5 × 1.5 cm2 to 5 × 5 cm2 (small fields) and 6 × 6 cm2 to 20 × 20 cm2 (large fields) field sizes were obtained. The cutout factor was measured for the small fields.Results: SSDeff in small fields is highly dependent on energy and field size and increases with increasing electron beam energy and field size. For large electron fields, with some exceptions for the 20 × 20 cm2 field, this quantity also increases with energy. The SSDeff was increased with increasing beam energy and field size for all three detectors.Conclusion: The SSDeff varies significantly for different field sizes or cutouts. It is recommended that SSDeff be determined for each electron beam size or cutout. Selecting an appropriate dosimetry system can have an effect in determining cutout factor.


2021 ◽  
Vol 13 (23) ◽  
pp. 13354
Author(s):  
Daniel Nilsson ◽  
Håkan Rosenqvist

Small arable fields are beneficial with regard to ecosystem services, e.g., concerning biodiversity. By selecting appropriate crops and cultivation practices, arable fields can also be used as carbon sinks. The objectives of this study were to investigate what impact field conditions (e.g., field size and shape) and payments (subsidies) for environmental benefits have on profitability. A dynamic simulation model was used to simulate machine operations in fields of two different shapes and five different sizes (from 0.75 to 12.00 ha). A wide range of crops cultivated in Sweden were investigated (fallow land and plantation of Norway spruce were also included). A perimeter-based subsidy was suggested in order to conserve and promote biodiversity, and an area- and crop-based subsidy was suggested in order to promote sequestration of soil organic carbon (SOC). The results showed that, without financial support and from a purely economic point of view, most field types investigated should be planted with Norway spruce. With currently available subsidies, e.g., EU Common Agricultural Policy (CAP) direct payments, hybrid aspen, poplar, fallow, and extensive ley cultivation are the most profitable crops. Perimeter-based subsidies favoured the net gain for small fields. As expected, a subsidy for sequestration of SOC favoured cultivation of specific SOC-sequestering crops such as ley, willow, and poplar. Our recommendation for future studies is to investigate a well-balanced combination of perimeter-based support and SOC sequestration support that benefits biodiversity and climate under different cultivation conditions.


Sign in / Sign up

Export Citation Format

Share Document