scholarly journals Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat

2016 ◽  
Vol 87 (7) ◽  
pp. 073702 ◽  
Author(s):  
H. von Allwörden ◽  
K. Ruschmeier ◽  
A. Köhler ◽  
T. Eelbo ◽  
A. Schwarz ◽  
...  
2012 ◽  
Vol 3 ◽  
pp. 52-56 ◽  
Author(s):  
Woo-Kyung Lee ◽  
Minchul Yang ◽  
Arnaldo R Laracuente ◽  
William P King ◽  
Lloyd J Whitman ◽  
...  

Polymer nanostructures were directly written onto substrates in ultra-high vacuum. The polymer ink was coated onto atomic force microscope (AFM) probes that could be heated to control the ink viscosity. Then, the ink-coated probes were placed into an ultra-high vacuum (UHV) AFM and used to write polymer nanostructures on surfaces, including surfaces cleaned in UHV. Controlling the writing speed of the tip enabled the control over the number of monolayers of the polymer ink deposited on the surface from a single to tens of monolayers, with higher writing speeds generating thinner polymer nanostructures. Deposition onto silicon oxide-terminated substrates led to polymer chains standing upright on the surface, whereas deposition onto vacuum reconstructed silicon yielded polymer chains aligned along the surface.


2010 ◽  
Vol 64 ◽  
pp. 25-32 ◽  
Author(s):  
Philip Egberts ◽  
Roland Bennewitz

Scratches on KBr(100) surfaces were produced and examined with an atomic force microscope (AFM) operated in an ultra-high vacuum (UHV) environment. Scratches with lengths on the order of 100s of nanometers and depths on the order of atomic layers were investigated. Non-contact AFM topographic images of scratches revealed screw and edge dislocation activity around the scratch sites, illuminating the role of plastic deformation in wear processes. Friction coefficients of approximately 0.3 were measured during scratching, more comparable to macroscopic friction experiments than those measured in low-load, single asperity experiments.


2018 ◽  
Vol 89 (10) ◽  
pp. 103701 ◽  
Author(s):  
Joong Il Jake Choi ◽  
Jeong Jin Kim ◽  
Wooseok Oh ◽  
Won Hui Doh ◽  
Jeong Young Park

2010 ◽  
Vol 518 (16) ◽  
pp. 4688-4691 ◽  
Author(s):  
Krzysztof Kolanek ◽  
Massimo Tallarida ◽  
Konstantin Karavaev ◽  
Dieter Schmeisser

2016 ◽  
Vol 7 ◽  
pp. 432-438 ◽  
Author(s):  
Hannes Beyer ◽  
Tino Wagner ◽  
Andreas Stemmer

Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


2013 ◽  
Vol 21 (2) ◽  
Author(s):  
M. Mazur ◽  
D. Wojcieszak ◽  
J. Domaradzki ◽  
D. Kaczmarek ◽  
S. Song ◽  
...  

AbstractIn this paper designing, preparation and characterization of multifunctional coatings based on TiO2/SiO2 has been described. TiO2 was used as a high index material, whereas SiO2 was used as a low index material. Multilayers were deposited on microscope slide substrates by microwave assisted reactive magnetron sputtering process. Multilayer design was optimized for residual reflection of about 3% in visible spectrum (450–800 nm). As a top layer, TiO2 with a fixed thickness of 10 nm as a protective film was deposited. Based on transmittance and reflectance spectra, refractive indexes of TiO2 and SiO2 single layers were calculated. Ultra high vacuum atomic force microscope was used to characterize the surface properties of TiO2/SiO2 multilayer. Surface morphology revealed densely packed structure with grains of about 30 nm in size. Prepared samples were also investigated by nanoindentation to evaluate their protective performance against external hazards. Therefore, the hardness of the thin films was measured and it was equal to 9.34 GPa. Additionally, contact angle of prepared coatings has been measured to assess the wetting properties of the multilayer surface.


Sign in / Sign up

Export Citation Format

Share Document