Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

Author(s):  
Joshua Olusegun Okeniyi ◽  
Olugbenga Adeshola Omotosho ◽  
Abimbola Patricia Idowu Popoola ◽  
Cleophas Akintoye Loto
2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Alexander Bulkov ◽  
Michail Baev ◽  
Igor Ovchinnikov

The influence of reinforcing steel corrosion on the durability of reinforced concrete structures of transport structures and the degree of knowledge of this problem is considered. It is specified that the protection of reinforcing steel from corrosion is not able to completely replace the correct design and use of high-strength concrete. But it is able to extend the life of reinforced concrete structures. It is noted that corrosion of the reinforcement leads to a decrease in the structural strength due to wear and tear and by a third of the period of operation of reinforced concrete structures, as a result of which transport structures collapse. As an example of the detrimental effect of corrosion of reinforcing steel on the durability of transport structures, examples of accidents of bridges and overpasses caused by this type of corrosion are given. As a result, a conclusion is drawn on the advisability of ensuring a sufficient level of corrosion protection of reinforcing steel to achieve the required durability of reinforced concrete structures of transport structures. The types and causes of corrosion processes in reinforcing steel reinforced concrete structures are described. The compositions and technologies of anticorrosive protection are examined and analyzed. Comparison of the compositions of anticorrosive protection of reinforced concrete structures is carried out according to the following criteria: consumption, density, viability, curing temperature and the number of components of the composition. A comparison of anti-corrosion protection technologies is carried out on the basis of the following indicators: line dimensions, productivity and consumption of energy resources. A comparison is also made of the cost of using various anti-corrosion protection technologies. Based on the data obtained, the advantages and disadvantages of the considered compositions and technologies of corrosion protection are determined. As a result, the most effective and technologically advanced method of corrosion protection of steel reinforcement of reinforced concrete structures of transport structures is selected.


2000 ◽  
Vol 6 (6) ◽  
pp. 597-618
Author(s):  
W. Schwarz

Abstract Corrosion of steel in concrete is one of the critical problems in civil engineering with regard to the durability of reinforced concrete structures. Cathodic protection (CP) of the steel rebars in concrete structures evolved during the past 25 years as a reliable method to extend the lifetime of reinforced concrete structures. During the CP operation, proportional to the applied protection current, acids are generated at the anode/concrete interface. This effect limits durability and performance of various CP-systems. This contribution describes a newly developed conductive composite paint for use as anode material, characterized by high durability at high current densities and easy applicability, and its practical application for the corrosion protection of a parking deck in Oslo.


2011 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
A. Hegyi ◽  
H. Vermeşan ◽  
V. Rus

Abstract In this paper we wish to present the numerical model elaborated in order to simulate some physical phenomena that influence the general deterioration of steel, whether hot dip galvanized or not, in reinforced concrete. We describe the physical and mathematical models, establishing the corresponding equation system, the initial and boundary conditions. We have also presented the numeric model associated to the mathematical model and the numeric methods of discretization and solution of the differential equations system that describes the mathematical model.


Sign in / Sign up

Export Citation Format

Share Document