scholarly journals All-order bounds for correlation functions of gauge-invariant operators in Yang-Mills theory

2016 ◽  
Vol 57 (12) ◽  
pp. 122301 ◽  
Author(s):  
Markus B. Fröb ◽  
Jan Holland ◽  
Stefan Hollands
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Marius de Leeuw ◽  
Burkhard Eden ◽  
Dennis le Plat ◽  
Tim Meier ◽  
Alessandro Sfondrini

Abstract Correlation functions of gauge-invariant composite operators in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory can be computed by integrability using triangulations. The elementary tile in this process is the hexagon, which should be glued by appropriately inserting resolutions of the identity involving virtual (“mirror”) magnons. We consider this problem for five-point functions of protected operators. At one-loop in the ’t Hooft coupling, it is necessary to glue three adjacent tiles which involves two virtual magnons scattering among each other. We show that the result can be simplified by using an adapted mirror rotation and employing appropriate summation techniques. The mirror-particle contributions then yield hyperlogarithms of weight two. Finally, we use these results to investigate braiding prescriptions introduced in earlier work on the problem.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
D. Chicherin ◽  
J. M. Henn ◽  
E. Sokatchev ◽  
K. Yan

Abstract We present a method for calculating event shapes in QCD based on correlation functions of conserved currents. The method has been previously applied to the maximally supersymmetric Yang-Mills theory, but we demonstrate that supersymmetry is not essential. As a proof of concept, we consider the simplest example of a charge-charge correlation at one loop (leading order). We compute the correlation function of four electromagnetic currents and explain in detail the steps needed to extract the event shape from it. The result is compared to the standard amplitude calculation. The explicit four-point correlation function may also be of interest for the CFT community.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Yufan Wang ◽  
Yiwen Pan

2005 ◽  
Vol 72 (10) ◽  
Author(s):  
M. A. L. Capri ◽  
D. Dudal ◽  
J. A. Gracey ◽  
V. E. R. Lemes ◽  
R. F. Sobreiro ◽  
...  
Keyword(s):  

2006 ◽  
Vol 21 (23n24) ◽  
pp. 4627-4761 ◽  
Author(s):  
OLIVER J. ROSTEN

Within the framework of the Exact Renormalization Group, a manifestly gauge invariant calculus is constructed for SU (N) Yang–Mills. The methodology is comprehensively illustrated with a proof, to all orders in perturbation theory, that the β function has no explicit dependence on either the seed action or details of the covariantization of the cutoff. The cancellation of these nonuniversal contributions is done in an entirely diagrammatic fashion.


2006 ◽  
Vol 8 (1) ◽  
pp. 203-217 ◽  
Author(s):  
Marco Castrillón López ◽  
Jaime Muñoz Masqué

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Giulia Mazzola ◽  
Simon V. Mathis ◽  
Guglielmo Mazzola ◽  
Ivano Tavernelli

2014 ◽  
Vol 92 (9) ◽  
pp. 1033-1042 ◽  
Author(s):  
S. Gupta ◽  
R. Kumar ◽  
R.P. Malik

In the available literature, only the Becchi–Rouet–Stora–Tyutin (BRST) symmetries are known for the Jackiw–Pi model of the three (2 + 1)-dimensional (3D) massive non-Abelian gauge theory. We derive the off-shell nilpotent [Formula: see text] and absolutely anticommuting (sbsab + sabsb = 0) (anti-)BRST transformations s(a)b corresponding to the usual Yang–Mills gauge transformations of this model by exploiting the “augmented” superfield formalism where the horizontality condition and gauge invariant restrictions blend together in a meaningful manner. There is a non-Yang–Mills (NYM) symmetry in this theory, too. However, we do not touch the NYM symmetry in our present endeavor. This superfield formalism leads to the derivation of an (anti-)BRST invariant Curci–Ferrari restriction, which plays a key role in the proof of absolute anticommutativity of s(a)b. The derivation of the proper anti-BRST symmetry transformations is important from the point of view of geometrical objects called gerbes. A novel feature of our present investigation is the derivation of the (anti-)BRST transformations for the auxiliary field ρ from our superfield formalism, which is neither generated by the (anti-)BRST charges nor obtained from the requirements of nilpotency and (or) absolute anticommutativity of the (anti-)BRST symmetries for our present 3D non-Abelian 1-form gauge theory.


Sign in / Sign up

Export Citation Format

Share Document