scholarly journals Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

2017 ◽  
Author(s):  
Benoit Lepage ◽  
Guillaume Painchaud-April
2015 ◽  
Vol 818 ◽  
pp. 256-259
Author(s):  
Erika Hodúlová ◽  
Ingrid Kovaříková ◽  
Beáta Šimeková ◽  
Koloman Ulrich

The non-destructive inspection of duplex steels is a big challenge, being composed of ferrite and austenite, have some particularities. When using ultrasound, for instance, its waves propagate well in ferrite, but suffer strong attenuation, scattering and refraction in austenite. The aim of this work is to use the Phased Array ultrasonic inspection method for the thin (4 mm) duplex steel weld joint inspection. The experimental sample was made ​​of duplex steel shaped tube with an outer diameter of 44 mm and a wall thickness of 3.8 mm welded with a laser beam. The experiment was necessary to verify attenuation of duplex steel. On the base material and the weld joint were made the artificial defects, in which the adjusted sensitivity of the ultrasonic device was set.The result of the measuring was the defect echo coming from the weld root layer. The length (about 25 mm) can only be estimated due to the inaccurate constant velocity of probe motion along the surface.


1984 ◽  
Vol 87 (793) ◽  
pp. 1341-1346
Author(s):  
Tadao MORI ◽  
Hideo KASHIWAYA ◽  
Ichiro KOMURA ◽  
Satoshi NAGAI ◽  
Kuniharu UCHIDA

Author(s):  
J Downing ◽  
A Hook

Two steel substrate test panels were developed to represent common plate thicknesses found on naval vessels and scanned using the Babcock developed ultrasonic technique. One sample comprised of a series of slotted surface breaking flaws of varying widths and through thicknesses to represent fracturing/cracking. The inspection method detected simulated cracking to a depth of 2mm and 0.5mm in width. The second sample included numerous loss of wall thickness areas of varying diameters and through thicknesses, with the smallest detectable loss of wall thickness being 0.1mm at a 15mm diameter. After proving confidence in detection, there was a need to characterise flaws to provide support and ascertain a repair action. Samples were produced that were subjected to either impact or heat exposure to induce realistic representative damage. The practical ultrasonic method was successfully used to independently characterise between the samples, with induced de-laminations caused by blisters, and multi layered matrix cracking caused by varying levels of projectile impacts, due to their unique morphology.


Author(s):  
Yaser A. Jasim ◽  
Senan Thabet ◽  
Thabit H. Thabit

<p><em>A non-destructive test method is the main method to examine most of the materials, composite materials in particular. There are too many </em><em>Non-Destructive Test (</em><em>NDT) methods to inspect the materials such as, Visual Inspection, Liquid Penetrate Inspection, Eddy-Current Inspection, Phased Array Inspection, Magnetic Particle Inspection and Ultrasonic Inspection</em><em>.</em></p><p><em>This paper aims to creat a unified methodology for engineers depending on reaserch onion to study the inspection of the composite materials.</em></p><p><em>The researchers concluded that NDT method is the most suitable method for testing any materials and the composite materials. They also recommended to choose the most suitable NDT method as every materials and composite materials have its own properties as well as the inspection methods had its own capabilities and limitations. </em></p>


Author(s):  
Daniel Carter ◽  
Kari Gonzales

Transportation Technology Center, Inc. (TTCI) has investigated various nondestructive inspection (NDI) methods to determine if they are capable of reliably inspecting side frames, bolsters, knuckles, and couplers. The NDI methods used for this investigation include dry and wet (fluorescent) magnetic particle, liquid penetrant, alcohol wipe, visual, ultrasonic (pulse-echo and phased array), and radiography. Inspection results from all methods were used to determine which methods produced repeatable results. From the initial inspection analysis, TTCI engineers determined that the magnetic particle inspection method is the most capable for detecting defects in railroad castings. Further investigation of the magnetic particle technique was completed to develop reliable inspection methods for use on bolsters, side frames, knuckles, and couplers. Each of the inspection techniques have been used for inspections in the field. Using the results of the field tests, procedures were developed by TTCI and submitted to the Association of American Railroads’ (AAR) Coupling Systems and Truck Castings Committee for review and implementation. The inspection procedures can be used by manufacturers, railroads, and car repair shops. Limitations of the inspection procedures include the amount of time necessary to perform the inspection and the reliability of detecting certain types of defects below the surface of the casting. Although these limitations exist, the procedures developed by TTCI are expected to improve the quality of in-service castings and reduce the number of train partings and derailments due to broken or cracked components.


2021 ◽  
Author(s):  
Randika Kosala Wathavana Vithanage ◽  
Ehsan Mohseni ◽  
Zhen Qiu ◽  
Yashar Javadi ◽  
David Lines ◽  
...  

2001 ◽  
Vol 64 (9) ◽  
pp. 1392-1398 ◽  
Author(s):  
NEIL N. SHAH ◽  
PAUL K. ROONEY ◽  
AYHAN OZGULER ◽  
SCOTT A. MORRIS ◽  
WILLIAM D. O'BRIEN

The microbial integrity of many types of flexible food packages depends on a zero defect level in the fused seam seal. Human inspection for defects in these seals is marginal at best, and secondary incubation protocols are often used to spot packages with compromised integrity before releasing product for sale. A new type of inspection method has been developed and is being evaluated for robustness. The purpose of the study was to evaluate a new raster scanning geometry to simulate continuous motion, online ultrasonic inspection of the seal region in flexible food package seals. A principal engineering tradeoff of scanning inspection systems is between increased line speed that results from decreased spatial sampling (less acquired data to process) and decreased image quality. The previously developed pulse-echo Backscattered Amplitude Integral (BAI) mode imaging technique is used to form ultrasound images using the new scanning geometry. At an ultrasonic frequency of 22.9 MHz, 38- and 50-μm-diameter air-filled channel defects in all-plastic transparent trilaminate are evaluated. The contrast-to-noise ratio (CNR) of the processed BAI-mode image is used to quantify image quality as a function of spatial sampling. Results show seal defects (38- and 50-μm diameter) are still detectable for undersampled conditions, although image quality degrades as spatial sampling decreases. Further, it is concluded that the raster scanning geometry is feasible for online inspection.


Sign in / Sign up

Export Citation Format

Share Document