Nondestructive Inspection Methods for Railroad Castings

Author(s):  
Daniel Carter ◽  
Kari Gonzales

Transportation Technology Center, Inc. (TTCI) has investigated various nondestructive inspection (NDI) methods to determine if they are capable of reliably inspecting side frames, bolsters, knuckles, and couplers. The NDI methods used for this investigation include dry and wet (fluorescent) magnetic particle, liquid penetrant, alcohol wipe, visual, ultrasonic (pulse-echo and phased array), and radiography. Inspection results from all methods were used to determine which methods produced repeatable results. From the initial inspection analysis, TTCI engineers determined that the magnetic particle inspection method is the most capable for detecting defects in railroad castings. Further investigation of the magnetic particle technique was completed to develop reliable inspection methods for use on bolsters, side frames, knuckles, and couplers. Each of the inspection techniques have been used for inspections in the field. Using the results of the field tests, procedures were developed by TTCI and submitted to the Association of American Railroads’ (AAR) Coupling Systems and Truck Castings Committee for review and implementation. The inspection procedures can be used by manufacturers, railroads, and car repair shops. Limitations of the inspection procedures include the amount of time necessary to perform the inspection and the reliability of detecting certain types of defects below the surface of the casting. Although these limitations exist, the procedures developed by TTCI are expected to improve the quality of in-service castings and reduce the number of train partings and derailments due to broken or cracked components.

Author(s):  
Michael Moles ◽  
Simon Labbe´

ASME Code Case 2235 now permits automated ultrasonic testing (AUT) instead of radiography for vessels 0.5” (12.7 mm) or greater. Ultrasonic testing has significant advantages over radiography: no safety hazard so no disruption of production; inspection as soon as component cools; rapid feedback; defect vertical sizing for Fitness-For-Purpose applications; tailored inspections. ASME CC 2235 permits a variety of inspection techniques based on pulse-echo and Time-Of-Flight Diffraction (TOFD), provided a Performance Demonstration is achieved. This paper describes a number of AUT systems which fulfill the ASME code case. These AUT systems range from a portable phased array system (Omniscan) for low cost and convenience, through conventional systems based on TOFD (μ-Tomoscan), general phased array systems (Tomoscan III) to premium systems with multiple NDE approaches. With such a variety of technologies and costs, AUT systems can be tailored to the client’s needs.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1067
Author(s):  
Andreea Ioana Sacarea ◽  
Gheorghe Oancea ◽  
Luminita Parv

The quality of product and process is one of the most important factors in achieving constructively and then functionally safe products in any industry. Over the years, the concept of Industry 4.0 has emerged in all the quality processes, such as nondestructive testing (NDT). The most widely used quality control methods in the industries of mechanical engineering, aerospace, and civil engineering are nondestructive methods, which are based on inspection by detecting indications, without affecting the surface quality of the examined parts. Over time, the focus has been on research with the fourth generation in nondestructive testing, i.e., NDT 4.0 or Smart NDT, as a main topic to ensure the efficiency and effectiveness of the methods for a safe detection of all types of discontinuities. This area of research aims at the efficiency of methods, the elimination of human errors, digitalization, and optimization from a constructive point of view. In this paper, we presented a magnetic particles inspection method and the possible future directions for the development of standard equipment used in the context of this method in accordance with the applicable physical principles and constraints of the method for cylindrical parts. A possible development direction was presented in order to streamline the mass production of parts made of ferromagnetic materials. We described the methods of analysis and the tools used for the development of a magnetic particle inspection method used for cylindrical parts in all types of industry and NDT 4.0; the aim is to provide new NDT 4.0 directions in optimizing the series production for cylindrical parts from industry, as given in the conclusion of this article.


2001 ◽  
Author(s):  
Pamela G. Herzog ◽  
Vincent Lupien ◽  
James T. Miller ◽  
John J. Selman ◽  
Michael Moles

Abstract An Air Force Aging Aircraft Project was initiated to identify a suitable replacement for the Autoscan. The Autoscan is a unique piece of equipment that was originally identified for specific inspections for detection of first-layer, faying surface fatigue cracks (.030″ and larger) around fastener holes beneath the fastener heads, without removal of the fastener. The currently inspected parent material ranges from .125 to .3 inches thick, 2024T3 or 7075-T73 aluminum. Potential also exists for replacing other aging inspection equipment such as the Rotoscan. A secondary objective was to evaluate the feasibility of expanding the inspection capabilities to detect corrosion as well as cracks. A Trade Study was conducted initially to consider existing technologies available, trade-offs, and technology insertion in order to meet the required performance parameters. The trade study showed Phased Array Ultrasonics to have the greatest potential, so it was chosen as the inspection method to pursue. Using phased arrays, a novel inspection technique for rapidly and reliably inspecting the area around fastener holes for cracks and corrosion has been developed with no moving parts. Specially designed probes are used for the aircraft inspections. This design consists of a three-dimensional matrix of 504 ultrasonic elements on a cone that encircles the fastener head. The two-dimensional arrangement of elements permits deflection of the ultrasonic beam in three dimensions. Full circumferential scans are performed by programming the phased array focal laws to scan 360° of the fastener holes, using a combination of the following scan patterns: pulse-echo at 45° incident on the crack, pulse-echo at 90°, pitch-catch, plus local scanning. This capability allows flexible coverage of the fastener hole and surrounding area, again with no moving parts. Additionally, the beam deflection capability means that one probe is adaptable to a wide range of fastener diameters and skin thickness. Several conical sub-arrays were built to evaluate the feasibility of the concept experimentally. The experimental results along with numerical modeling were used to determine optimal values for inner and outer radii of the cone, angle of the cone, number of elements and arrangement of the elements. A complete prototype conical array was subsequently built. The final portion of this project includes developing the specific inspection procedures, and performing a Probability of Detection study (POD) developed by the FAA’s Airworthiness Assurance Nondestructive Tested Validation Center at Sandia National Laboratory.


Author(s):  
B. F. Tarasenko B. F. ◽  
◽  
S. Y. Orlenko S. Y. ◽  
V. V. Kuzmin V. V.

The article presents a comparative analysis, based on field tests, of the quality of loosening of soil structures of the upper horizon with technical means developed at KubSAU and an improved design of a universal tillage unit.


2020 ◽  
pp. 17-27
Author(s):  
А.А. Шелухин

In this article, the analysis of the acoustic path during the ultrasonic pulse echo testing of the rail head in production is carried out. The influence of the parameters of the applied piezoelectric transducers on the distribution of sensitivity for the sounding scheme used in the existing installations is estimated and the real sensitivity of detecting defects of the «non-metallic inclusion» type is estimated.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 534b-534
Author(s):  
James D. McCreight

Yellowing of melon (Cucumis melo L.) incited by lettuce infectious yellows virus (LIYV) reduces yield and fruit quality of infected plants. LIYV is transmitted only by the sweetpotato whitefly (Bemisia tabaci Genn.). Two naturally infected field tests indicated several potential sources of resistance to LIYV. PI 124112 and `Snake Melon' had mild symptoms in both field tests whereas PI 313970 was asymptomatic in the test in which it was included. In greenhouse tests using controlled inoculation, PI 313970 was asymptomatic, had negative ELISA assays for LIYV, and was negative for LIYV in serial transfers to Chenopodium. `Top Mark' and `PMR 5' were symptomatic, had positive ELISA assays for LIYV, and were positive for LIYV in serial transfers to Chenopodium in these greenhouse tests. Limited data indicate that resistance in PI 313970 is conditioned by a single, dominant gene.


2021 ◽  
Vol 11 (9) ◽  
pp. 3747
Author(s):  
Leticia Presa ◽  
Jorge L. Costafreda ◽  
Domingo Alfonso Martín

This work aims to study the relationship between the compression resistance and velocity from ultrasonic pulses in samples of mortars with 25% of pozzolanic content. Pozzolanic cement is a low-priced sustainable material that can reduce costs and CO2 emissions that are produced in the manufacturing of cement from the calcination of calcium carbonate. Using ultrasonic pulse velocity (UPV) to estimate the compressive resistance of mortars with pozzolanic content reduces costs when evaluating the quality of structures built with this material since it is not required to perform an unconfined compression test. The objective of this study is to establish a correlation in order to estimate the compression resistance of this material from its ultrasonic pulse velocity. For this purpose, we studied a total of 16 cement samples, including those with additions of pozzolanic content with different compositions and a sample without any additions. The results obtained show the mentioned correlation, which establishes a basis for research with a higher number of samples to ascertain if it holds true at greater curing ages.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2949
Author(s):  
Marzieh Rabiei ◽  
Arvydas Palevicius ◽  
Amir Dashti ◽  
Sohrab Nasiri ◽  
Ahmad Monshi ◽  
...  

Taking into account X-ray diffraction, one of the well-known methods for calculating the stress-strain of crystals is Williamson-Hall (W–H). The W-H method has three models, namely (1) Uniform deformation model (UDM); (2) Uniform stress deformation model (USDM); and (3) Uniform deformation energy density model (UDEDM). The USDM and UDEDM models are directly related to the modulus of elasticity (E). Young’s modulus is a key parameter in engineering design and materials development. Young’s modulus is considered in USDM and UDEDM models, but in all previous studies, researchers used the average values of Young’s modulus or they calculated Young’s modulus only for a sharp peak of an XRD pattern or they extracted Young’s modulus from the literature. Therefore, these values are not representative of all peaks derived from X-ray diffraction; as a result, these values are not estimated with high accuracy. Nevertheless, in the current study, the W-H method is used considering the all diffracted planes of the unit cell and super cells (2 × 2 × 2) of Hydroxyapatite (HA), and a new method with the high accuracy of the W-H method in the USDM model is presented to calculate stress (σ) and strain (ε). The accounting for the planar density of atoms is the novelty of this work. Furthermore, the ultrasonic pulse-echo test is performed for the validation of the novelty assumptions.


1993 ◽  
Vol 21 (1) ◽  
pp. 3-16 ◽  
Author(s):  
P. Spalthoff ◽  
W. Wunnike ◽  
C. Nauer-Gerhard ◽  
H. J. Bunge ◽  
E. Schneider

The components of the elastic stiffness tensor of hot rolled low-carbon steel were determined using an ultrasonic pulse-echo-method. They were also calculated on the basis of X-ray texture measurements using the Hill approximation. The maximum deviation between experimental and calculated values is 3.5%. An influence of the slightly anisotropic grain structure on the elastic anisotropy could not be seen.


Sign in / Sign up

Export Citation Format

Share Document