scholarly journals Finite element analysis of stress transfer mechanism from matrix to the fiber in SWCN reinforced nanocomposites

Author(s):  
E. Günay
2016 ◽  
Vol 36 (4) ◽  
pp. 575-584 ◽  
Author(s):  
Rui Li ◽  
Bojing Xu ◽  
Qingchao Zhang ◽  
Xue Gu ◽  
Guoliang Zheng ◽  
...  

2005 ◽  
Vol 272 (1575) ◽  
pp. 1979-1983 ◽  
Author(s):  
K.L Goh ◽  
J.R Meakin ◽  
R.M Aspden ◽  
D.W.L Hukins

Collagen fibrils provide tensile reinforcement for extracellular matrix. In at least some tissues, the fibrils have a paraboloidal taper at their ends. The purpose of this paper is to determine the implications of this taper for the function of collagen fibrils. When a tissue is subjected to low mechanical forces, stress will be transferred to the fibrils elastically. This process was modelled using finite element analysis because there is no analytical theory for elastic stress transfer to a non-cylindrical fibril. When the tissue is subjected to higher mechanical forces, stress will be transferred plastically. This process was modelled analytically. For both elastic and plastic stress transfer, a paraboloidal taper leads to a more uniform distribution of axial tensile stress along the fibril than would be generated if it were cylindrical. The tapered fibril requires half the volume of collagen than a cylindrical fibril of the same length and the stress is shared more evenly along its length. It is also less likely to fracture than a cylindrical fibril of the same length in a tissue subjected to the same mechanical force.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Muhammed Imam ◽  
Julien Meaud ◽  
Susanta Ghosh ◽  
Trisha Sain

The objective of the present work is to investigate the possibility of improving both stiffness and energy absorption in interlocking, architectured, brittle polymer blocks through hierarchical design. The interlocking mechanism allows load transfer between two different material blocks by means of contact at the mating surfaces. The contacting surfaces further act as weak interfaces that allow the polymer blocks to fail gradually under different loading conditions. Such controlled failure enhances the energy absorption of the polymer blocks but with a penalty in stiffness. Incorporating hierarchy in the form of another degree of interlocking at the weak interfaces improves stress transfer between contacting material blocks; thereby, improvement in terms of stiffness and energy absorption can be achieved. In the present work, the effects of hierarchy on the mechanical responses of a single interlocking geometry have been investigated systematically using finite element analysis (FEA) and results are validated with experiments. From finite element (FE) predictions and experiments, presence of two competing failure mechanisms have been observed in the interlock: the pullout of the interlock and brittle fracture of the polymer blocks. It is observed that the hierarchical interface improves the stiffness by restricting sliding between the contacting surfaces. However, such restriction can lead to premature fracture of the polymer blocks that eventually reduces energy absorption of the interlocking mechanism during pullout deformation. It is concluded that the combination of stiffness and energy absorption is optimal when fracture of the polymer blocks is delayed by allowing sufficient sliding at the interfaces.


2013 ◽  
Vol 39 (1) ◽  
pp. 23-29 ◽  
Author(s):  
Werner Winter ◽  
Daniel Klein ◽  
Matthias Karl

Micromotion between dental implant and bony socket may occur in immediate-loading scenarios. Excessive micromotion surpassing an estimated threshold of approximately 150 μm may result in fibrous encapsulation instead of osseointegration of the implant. As finite element analysis (FEA) has been applied in this field, it was the aim of this study to evaluate the effect of implant-related variables and modeling parameters on simulating micromotion phenomena. Three-dimensional FEA models representing a dental implant within a bony socket were constructed and used for evaluating micromotion (global displacement) and stress transfer (von Mises equivalent stress) at the implant-bone interface when static loads were applied. A parametric study was conducted altering implant geometry (cylinder, screw), direction of loading (axial, horizontal), healing status (immediate implant, osseointegrated implant), and contact type between implant and bone (friction free, friction, rigid). Adding threads to a cylindrically shaped implant as well as changing the contact type between implant and bone from friction free to rigid led to a reduction of implant displacement. On the other hand, reducing the elastic modulus of bone for simulating an immediate implant caused a substantial increase in displacement of the implant. Altering the direction of loading from axial to horizontal caused a change in loading patterns from uniform loading surrounding the whole implant to localized loading in the cervical area. Implant-related and bone-related factors determine the degree of micromotion of a dental implant during the healing phase, which should be considered when choosing a loading protocol.


Sign in / Sign up

Export Citation Format

Share Document