scholarly journals Research for visualization of running state of long-distance water transmission pipeline based on OpenGL

2017 ◽  
Author(s):  
Xiaoping Zhang ◽  
Xuejun Xu ◽  
Bing Liu ◽  
Zhendong Zhang
2021 ◽  
Vol 18 (3) ◽  
pp. 501-533
Author(s):  
Kui Wan ◽  
Xuelian Gou ◽  
Zhiguang Guo

AbstractWith the explosive growth of the world’s population and the rapid increase in industrial water consumption, the world’s water supply has fallen into crisis. The shortage of fresh water resources has become a global problem, especially in arid regions. In nature, many organisms can collect water from foggy water under harsh conditions, which provides us with inspiration for the development of new functional fog harvesting materials. A large number of bionic special wettable synthetic surfaces are synthesized for water mist collection. In this review, we introduce some water collection phenomena in nature, outline the basic theories of biological water harvesting, and summarize six mechanisms of biological water collection: increased surface wettability, increased water transmission area, long-distance water delivery, water accumulation and storage, condensation promotion, and gravity-driven. Then, the water collection mechanisms of three typical organisms and their synthesis are discussed. And their function, water collection efficiency, new developments in their biomimetic materials are narrated, which are cactus, spider and desert beetles. The study of multiple bionics was inspired by the discovery of Nepenthes’ moist and smooth peristome. The excellent characteristics of a variety of biological water collection structures, combined with each other, are far superior to other single synthetic surfaces. Furthermore, the main problems in the preparation and application of biomimetic fog harvesting materials and the future development trend of materials fog harvesting are prospected.


Author(s):  
Trevor Place ◽  
Greg Sasaki ◽  
Colin Cathrea ◽  
Michael Holm

Strength and leak testing (AKA ‘hydrotesting’, and ‘pressure testing’) of pipeline projects remains a primary method of providing quality assurance on new pipeline construction, and for validating structural integrity of the as-built pipeline [1][2][3]. A myriad of regulations surround these activities to ensure soundness of the pipeline, security of the environment during and after the pressure testing operation, as well as personnel safety during these activities. CAN/CSA Z662-11 now includes important clauses to ensure that the pipeline designer/builder/operator consider the potential corrosive impacts of the pressure test media [4]. This paper briefly discusses some of the standard approaches used in the pipeline industry to address internal corrosion caused by pressure test mediums — which often vary according to the scope of the pipeline project (small versus large diameter, short versus very long pipelines) — as well as the rationale behind these different approaches. Case studies are presented to highlight the importance of considering pressure test medium corrosiveness. A practical strategy addressing the needs of long-distance transmission pipeline operators, involving a post-hydrotest inhibitor rinse, is presented.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
K. Hariri Asli ◽  
A. K. Haghi ◽  
H. Hariri Asli ◽  
E. Sabermaash Eshghi

This work defined an Eulerian-based computational model compared with regression of the relationship between the dependent and independent variables for water hammer surge wave in transmission pipeline. The work also mentioned control of Unaccounted-for-Water (UFW) based on the Geography Information System (GIS) for water transmission pipeline. The experimental results of laboratory model and the field test results showed the validity of prediction achieved by computational model.


2019 ◽  
Author(s):  
Jennifer Harrison ◽  
Kim Chanslor ◽  
Alan Rhames ◽  
Ronald Woodruff ◽  
Larry Nutt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document