Perfect spin filtering, rectifying and negative differential resistance effects in armchair graphene nanoribbons

2017 ◽  
Vol 121 (9) ◽  
pp. 093903 ◽  
Author(s):  
Dan Zhang ◽  
Mengqiu Long ◽  
Xiaojiao Zhang ◽  
Liling Cui ◽  
Xinmei Li ◽  
...  
2014 ◽  
Vol 28 (29) ◽  
pp. 1450229 ◽  
Author(s):  
Cai-ping Cheng ◽  
Hui-fang Hu ◽  
Zhao-jin Zhang ◽  
Quanhui Liu ◽  
Ying Chen ◽  
...  

By adopting density functional theory in combination with nonequilibrium Green's functions, we investigated the electronic structure and transport properties of silicon/nitrogen ( Si / N ) co-doping armchair graphene nanoribbons (AGNRs) with SiN x co-dopant incorporated in neighboring carbon atoms. The results demonstrate that the electronic structure can be modulated by introducing SiN x co-dopants in AGNRs. The striking negative differential resistance behaviors in the range of low bias can be observed in Si / N co-doped AGNR devices. These remarkable properties suggest the potential application of Si / N co-doping AGNRs in molectronics.


2020 ◽  
Vol 11 ◽  
pp. 688-694 ◽  
Author(s):  
Majid Sanaeepur

A nanometer-scaled resonant tunneling diode based on lateral heterojunctions of armchair graphene and boron nitride nanoribbons, exhibiting negative differential resistance is proposed. Low-bandgap armchair graphene nanoribbons and high-bandgap armchair boron nitride nanoribbons are used to design the well and the barrier region, respectively. The effect of all possible substitutional defects (including BC, NC, CB, and CN) at the interface of graphene and boron nitride nanoribbons on the negative differential resistance behavior of the proposed resonant tunneling diode is investigated. Transport simulations are carried out in the framework of tight-binding Hamiltonians and non-equilibrium Green’s functions. The results show that a single substitutional defect at the interface of armchair graphene and boron nitride nanoribbons can dramatically affect the negative differential resistance behavior depending on its type and location in the structure.


2019 ◽  
Vol 7 (21) ◽  
pp. 6241-6245 ◽  
Author(s):  
Wei-Wei Yan ◽  
Xiao-Fei Li ◽  
Xiang-Hua Zhang ◽  
Xinrui Cao ◽  
Mingsen Deng

Boron adsorption induces a heavily localized state right at the Fermi level only in the family of W = 3p + 1 and thus spin-splitting occurs spontaneously.


Sign in / Sign up

Export Citation Format

Share Document