Design selection of an innovative tool holder for ultrasonic vibration assisted turning (IN-UVAT) using finite element analysis simulation

Author(s):  
Haris Rachmat ◽  
M. Rasidi Ibrahim ◽  
Sulaiman bin Hasan
Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 81
Author(s):  
Atif Zahid ◽  
Faisal Khan ◽  
Naseer Ahmad ◽  
Irfan Sami ◽  
Wasiq Ullah ◽  
...  

A dual mover yokeless multi-tooth (DMYMT) permanent magnet flux switching motor (PM-FSM) design is presented in this article for ropeless elevator applications. The excitation sources, including a field winding and permanent magnet, are on the short mover in the proposed design structure, whereas the stator is a simple slotted iron core, thus reducing the vertical transportation system cost. The operational principle of the proposed DMYMT in PM-FSM is introduced. The proposed dual mover yokeless multi-tooth Permanent Magnet Flux Switching Motor is analyzed and compared for various performance parameters in a Finite Element Analysis package. The proposed machine has high thrust force and cost-effectiveness compared to conventional dual permanent magnet motor. Finally, this paper also develops an analytical model for the proposed structure, validated by comparing it with Finite Element Analysis simulation results. Results show good agreement between analytical prediction and Finite Element Analysis results.


2007 ◽  
Vol 539-543 ◽  
pp. 2651-2656 ◽  
Author(s):  
C.J. Huang ◽  
E. Ghassemieh

A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.


1994 ◽  
Vol 3 (5) ◽  
pp. 096369359400300
Author(s):  
M. Hadjiprocopiou ◽  
G.T. Reed ◽  
L. Hollaway ◽  
A.M. Thorne

Finite Element analysis is used to determine and to minimise the stress concentrations which arise in a “Smart” material system due to the embedded optical fibre sensors. The FE results show that with careful selection of the coating stiffness and thickness the stress concentrations caused by the fibre inclusion in the host material can be reduced.


Author(s):  
David Ross-Pinnock ◽  
Glen Mullineux

Control of temperature in large-scale manufacturing environments is not always practical or economical, introducing thermal effects including variation in ambient refractive index and thermal expansion. Thermal expansion is one of the largest contributors to measurement uncertainty; however, temperature distributions are not widely measured. Uncertainties can also be introduced in scaling to standard temperature. For more complex temperature distributions with non-linear temperature gradients, uniform scaling is unrealistic. Deformations have been measured photogrammetrically in two thermally challenging scenarios with localised heating. Extended temperature measurement has been tested with finite element analysis to assess a compensation methodology for coordinate measurement. This has been compared to commonly used uniform scaling and has outperformed this with a highly simplified finite element analysis simulation in scaling a number of coordinates at once. This work highlighted the need for focus on reproducible temperature measurement for dimensional measurement in non-standard environments.


2014 ◽  
Vol 543-547 ◽  
pp. 3-6
Author(s):  
Jie Min ◽  
Hai Sheng Wang ◽  
De Wei Guo ◽  
Wen Bin Zhang

DEFORM is a software used for FEA (Finite Element Analysis) simulation. By using this software, I take a research on the procedure when a steel billet with defect of artificial loosening is drawn out in a simulated environment. Then I build a FEA model about the loosening and compaction of a large-sized rotor and stimulate the procedure in accordance with current craft card involving rotor forging. Finally, I get a result: the relative density of the loose area reaches up to 85% after the first drawing-out process (note: forging ratio 1.47). After simulating the procedure of chamfering on a billet which has been already drawn out, I found that chamfering had little substantial impact on the its loosening and compaction.


2013 ◽  
Vol 750-752 ◽  
pp. 2212-2215
Author(s):  
Mo Nan Wang

Based on the thermo elasticity theory, the stress of femur prosthesis system was analyzed using finite element method. An evaluation for the selection of prosthetic material was presented after discussing the thermo physical property of material which had an effect on the stress of femur prosthesis system. The results indicate that the interface failure is the primary failure form of the femoral prosthesis system and the interface failure is accelerated for the reason of the thermal effect. So the prosthesis with low coefficient of thermal expansion should be selected which can moderate the interface failure in the certain degree.


Author(s):  
Nsikan Udoyen ◽  
David W. Rosen

AbstractA selection method to support adaptive reuse of parametric finite element analysis (FEA) models is introduced in this paper. Adaptive reuse of engineering artifacts such as FEA models is common in product design, but difficult to automate because of the need to integrate new information. The proposed method factors reusability into selection by evaluating models based on comparative estimates of effort involved in adapting them for reuse to model a query problem. The method is developed for FEA models of component-based designs. FEA modeling of electronic chip packages is used to illustrate the method's usefulness. We conclude with a discussion on the method's advantages and limitations and highlight important issues for further research.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Nicholas S Gukop ◽  
Peter M Kamtu ◽  
Bildad D Lengs ◽  
Alkali Babawuya ◽  
Adesanmi Adegoke

Investigation on the effect of mesh density on the analysis of simple support bracket was conducted using Finite element analysis simulation. Multiple analyses were carried out with mesh refinement from coarse mesh of 3.5 mm to a high-quality fine mesh with element size of 0.35 mm under 15 kN loading. Controlled mesh analysis was also conducted for the same loading. At the mesh size of 0.35 mm, it has a maximum stress value of 42.7 MPa. As the element size was reduced, it was observed that below 1.5 mm (higher mesh density) there was no significant increase in the peak stress value; the stress at this level increased by 0.028 % only. Further decreased of mesh size shows insignificant effect on the stresses and displacements for the high-quality fine mesh analysis. The application of High-quality mesh control analysis showed a significant reduction in the computation time by more than 90%. Regardless of the reduction in computation time, the controlled mesh analysis achieved more than 99% accuracy as compared to high-quality fine mesh analysis. Keywords— Computation time, Finite Element Analysis, Mesh density, Support Bracket.


Sign in / Sign up

Export Citation Format

Share Document