scholarly journals Electrical properties study of La2FeTiO6 double perovskite material at high temperature

Author(s):  
R. E. A. Utami ◽  
D. Triyono ◽  
H. Laysandra
2018 ◽  
Vol 879 ◽  
pp. 47-50
Author(s):  
Naphat Albutt ◽  
Suejit Pechprasarn ◽  
Sangwoei Sawekwiharee ◽  
Anchana Kuttiyawong ◽  
Panakamon Thonglor ◽  
...  

Determining the structure of ceramic materials is essential in order to fully characterize the electrical properties and improve existing materials. YMNO ceramics (Y2NiMnO6) prepared by compression and sintering were doped with TiO2 and analyzed using XRD and SEM. The calcined sample prior to sintering contained phases of the YMNO double perovskite and TiO2. Following sintering at 1400°C, the perovskite structure was replaced by Y2Ti2O7 fcc structure, and the grain size was found to increase with sintering time up to 18 hours. This sets a limit to the amount of TiO2 which can be used to successfully dope the YMNO ceramic.


2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Mohamed Maoudj ◽  
Djoudi Bouhafs ◽  
Nacer Eddine Bourouba ◽  
Abdelhak Hamida-Ferhat ◽  
Abdelkader El Amrani

1991 ◽  
Vol 227 ◽  
Author(s):  
M. Haider ◽  
E. Chenevey ◽  
R. H. Vora ◽  
W. Cooper ◽  
M. Glick ◽  
...  

ABSTRACTTrifluoromethyl group-containing polyimides not only show extraordinary electrical properties, but they also exhibit excellent long-term thermo-oxidative stability. Among the most thermomechanically stable structural polyimides are those from 6F dianhydride (6FDA) and 6F diamines. The effects of substituting non-fluorine containing monomers such as BTDA, mPDA and 4,4′-DADPS for the hexafluoroisopropylidene monomers on the dielectric, thermo-oxidative, thermal and mechanical properties of the copolymers were studied.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1922 ◽  
Author(s):  
Lunzhi Li ◽  
Lisheng Zhong ◽  
Kai Zhang ◽  
Jinghui Gao ◽  
Man Xu

There is a long-standing puzzle concerning whether polyethylene blends are a suitable substitution for cable-insulation-used crosslinking polyethylene (XLPE) especially at elevated temperatures. In this paper, we investigate temperature dependence of mechanical, electrical properties of blends with 70 wt % linear low density polyethylene (LLDPE) and 30 wt % high density polyethylene (HDPE) (abbreviated as 70 L-30 H). Our results show that the dielectric loss of 70 L-30 H is about an order of magnitude lower than XLPE, and the AC breakdown strength is 22% higher than XLPE at 90 °C. Moreover, the dynamic mechanical thermal analysis (DMA) measurement and hot set tests suggest that the blends shows optimal mechanical properties especially at high temperature with considerable temperature stability. Further scanning electron microscope (SEM) observation and X-ray diffraction (XRD) analysis uncover the reason for the excellent high temperature performance and temperature stability, which can be ascribed to the uniform fine-spherulite structure in 70 L-30 H blends with high crystallinity sustaining at high temperature. Therefore, our findings may enable the potential application of the blends as cable insulation material with higher thermal-endurance ability.


Sign in / Sign up

Export Citation Format

Share Document