Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions

2017 ◽  
Vol 24 (10) ◽  
pp. 103507 ◽  
Author(s):  
B. Tu ◽  
Q. F. Lu ◽  
T. Cheng ◽  
M. C. Li ◽  
Y. Yang ◽  
...  
2019 ◽  
Vol 49 (2) ◽  
pp. 308-312
Author(s):  
Toshihiro Tamai ◽  
Hiroyuki A. Sakaue ◽  
Yoshiro Terazaki ◽  
Nagato Yanagi ◽  
Nobuyuki Nakamura

Particles ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 238-252 ◽  
Author(s):  
Siriwan Krainara ◽  
Shuya Chatani ◽  
Heishun Zen ◽  
Toshiteru Kii ◽  
Hideaki Ohgaki

A THz coherent undulator radiation (THz-CUR) source has been developed at the Institute of Advanced Energy, Kyoto University. A photocathode Radio-Frequency (RF) gun and a bunch compressor chicane are used for generating short-bunch electron beams. When the electron beam energy is low, the space-charge effect strongly degrades the beam quality, such as the bunch length and the energy spread at the high bunch charge condition at around 160 pC, and results in the reduction of the highest frequency and the maximum radiated power of the THz-CUR. To mitigate the space charge effect, we have investigated the dependence of the electron beam quality on the laser distribution in transverse and longitudinal directions by using a numerical simulation code, General Particle Tracer GPT. The manipulation of the laser distribution has potential for improving the performance of the THz-CUR source. The electron bunch was effectively compressed with the chicane magnet when the laser transverse distribution was the truncated Gaussian profile, illuminating a cathode. Moreover, the compressed electron bunch was shortened by enlarging the laser pulse width. Consequently, an enhancement of the radiated power of the THz-CUR has been indicated.


2013 ◽  
Vol 652-654 ◽  
pp. 2391-2394
Author(s):  
Dong Hui Zhang ◽  
Chun Dong Liu ◽  
Jian Ming Liang ◽  
Chang Sheng Li

The concept of maximal and minimal displacement value of the electron-beam was proposed considering the influence of space charge effect based on the displacement value of the electron-beam in the process of magnetic deflection scanning in the ideal condition. The deduction of mathematical model of the maximal and minimal displacement value was accomplished. The position of the beam spot can be more accurately controlled by the model, thus it is made sure that un-molten metal is bombarded by the beam spot accurately, which can increase the melt quality.


2014 ◽  
Vol 602-605 ◽  
pp. 2986-2990
Author(s):  
De Wang

The influence of space charge in the space electron beam focusing system is introduced.Then charge-quantity distribution method which is used to calculate the density of space charge and the Computer Aided Design (CAD) method are put forward The result by programming calculation shows that the method is correct.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 46
Author(s):  
Chihiro Suzuki ◽  
Fumihiro Koike ◽  
Izumi Murakami ◽  
Tetsutarou Oishi ◽  
Naoki Tamura

Extreme ultraviolet (EUV) spectra of highly charged praseodymium (Pr) and neodymium (Nd) ions have been investigated in optically thin high-temperature plasmas produced in the Large Helical Device (LHD), a magnetically confined torus device for fusion research. Discrete spectral lines emitted mainly from highly charged ions having 4s or 4p outermost electrons were observed in plasmas with electron temperatures of 0.8–1.8 keV. Most of the isolated lines of Ga-like to Cu-like Nd ions were identified by a comparison with the recent data recorded in an electron beam ion trap (EBIT). The isolated lines of Pr ions corresponding to the identified lines of Nd ions were easily assigned from a similarity of the spectral feature for these two elements. As a result, some of the lines of Pr ions have been newly identified experimentally for the first time in this study.


2021 ◽  
Author(s):  
Jiang Yueling ◽  
Dong Quanlin

Abstract In electron beam technology, the critical focus of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in a simulation, obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.


Sign in / Sign up

Export Citation Format

Share Document