Fluid flow analysis of E-glass fiber reinforced pipe joints in oil and gas industry

2018 ◽  
Author(s):  
Sujith Bobba ◽  
Z. Leman ◽  
E. S. Zainuddin ◽  
S. M. Sapuan
Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 807 ◽  
Author(s):  
Matteo Cavasin ◽  
Marco Sangermano ◽  
Barry Thomson ◽  
Stefanos Giannis

An innovative testing methodology to evaluate the effect of long-term exposure to a marine environment on Glass Fiber Reinforced Polymers (GFRPs) has been investigated and is presented in this paper. Up to one-year ageing was performed in seawater, to simulate the environment for offshore oil and gas applications. The performance of an epoxy and epoxy-based GFRP exposed at different temperatures from 25 to 80 °C was quantified. The materials were also aged in dry air, to de-couple the thermal effect from the seawater chemical action. Gravimetric testing and Dynamic Mechanical Analysis (DMA) were conducted in parallel on progressively aged specimens. The effect of specimen geometry and the anisotropic nature of diffusion are comprehensively discussed in this paper. For the quasi-infinite specimens, the results show an exponential increase in the seawater absorption rate with temperature. The methodology allowed for the prediction of the diffusivity at a temperature of 4 °C as 0.23 and 0.05 × 10−13 m2/s for the epoxy and the epoxy-based composite, respectively. The glass transition temperature reduces as sea water is absorbed, yet the sea water effects appear to be reversible upon drying.


Author(s):  
Arihant Sonawat ◽  
Abdus Samad ◽  
Afshin Goharzadeh

Flaring and venting contributes significantly to greenhouse gas emissions and environmental pollution in the upstream oil and gas industry. Present work focuses on a horizontal flow, multiphase ejector used for recovery of these flared gases. The ejector typically handles these gases being entrained by high pressure well head fluid and a comprehensive understanding is necessary to design and operate such recovery system. A CFD based analysis of the flow through the ejector has been reported in this paper. The flow domain was meshed and the mass and momentum equations for fluid flow were solved using commercial software CFX (v14.5). Euler-Euler multiphase approach was used to model different phases. The entrainment behavior of the ejector was investigated and compared for different fluid flow conditions. It was observed that for a fixed primary fluid flow rate, the entrained or secondary flow rate decreased linearly with an increase in pressure difference between exit and suction pressure. The higher was primary flow rate, the greater was the suction created ahead of the primary nozzle and greater was the amount of energy added to the entrained fluid.


2013 ◽  
Vol 789 ◽  
pp. 507-510 ◽  
Author(s):  
Sarini Mat Yaakob ◽  
M. Che Ismail

Corrosion due to carbon dioxide (CO2) has a major impact on the oil and gas industry by severely affecting production and process facilities. One of the most economic methods to prevent the corrosion of piping and plants is the application of corrosion inhibitors. The presences of corrosion product such as iron carbonate (FeCO3) film may affect to the performance of corrosion inhibitor. In addition to that, fluid flow effect in pipeline may also influence the performance of corrosion inhibitor. Thus, the present work is conducted to study the effect of FeCO3 film to the performance of imidazoline based corrosion inhibitor under fluid flow effect. The experiments were done in glass cells at 80°C. The hydrodynamic condition experiment was simulated using rotating cylinder electrode (RCE). Corrosion inhibitor was added at two different concentrations in the iron carbonate film formation. A corrosion rates were measured by linear polarization resistance (LPR) method. The film was later analyzed using scanning electron microscopy (SEM). It was found that a better corrosion protection is still offered by corrosion inhibitor even with presence of FeCO3 film. A synergistic effect is offered by these two films of corrosion inhibitor and FeCO in reducing corrosion rate.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042012
Author(s):  
K A Bashmur ◽  
V A Kukartsev ◽  
V S Tynchenko ◽  
E G Kravcova ◽  
A V Kuznetsov ◽  
...  

Abstract The article deals with the problem of connecting pipelines in the oil and gas industry. One of the connection methods is resistance welding. Often, the use of this approach shows muted efficiency as it depends on the qualifications of the welder. A technique for creating flange (plane) connections with a pipe in the oil and gas industry is considered. The necessary equipment and types of welds within the considered area are considered. Thus, it is necessary to conduct a literature-patent review to find an alternative method for creating welded joints in oil and gas pipelines in order to increase the reliability of such joints and reduce the cost of production. The analysis of the subject area and the search for possible solutions to the problem posed were carried out. Various welding methods (manual electric arc, automatic submerged-arc welding, induction brazing, etc.) are considered and a comparison of the main welding methods is given, as well as the rationale for the use of electron beam welding to create such pipe joints.


Sign in / Sign up

Export Citation Format

Share Document