scholarly journals A new generation of effective core potentials from correlated calculations: 3d transition metal series

2018 ◽  
Vol 149 (13) ◽  
pp. 134108 ◽  
Author(s):  
Abdulgani Annaberdiyev ◽  
Guangming Wang ◽  
Cody A. Melton ◽  
M. Chandler Bennett ◽  
Luke Shulenburger ◽  
...  
2020 ◽  
Vol 22 (25) ◽  
pp. 14088-14098
Author(s):  
Amine Slassi ◽  
David Cornil ◽  
Jérôme Cornil

The rise of van der Waals hetero-structures based on transition metal dichalcogenides (TMDs) opens the door to a new generation of optoelectronic devices.


RSC Advances ◽  
2021 ◽  
Vol 11 (53) ◽  
pp. 33276-33287
Author(s):  
Chen-Hao Yeh ◽  
Yu-Tang Chen ◽  
Dah-Wei Hsieh

Janus 2D transition metal dichalcogenide (TMD) is a new generation 2D material with a unique asymmetric structure.


Author(s):  
Amit Kumar ◽  
Subhra Mohanty ◽  
Virendra Kumar Gupta

ABSTRACT Butadiene rubber (BR) is one of the most useful and second most produced rubber worldwide. Polymerization of 1,3-butadiene (BD) is a highly stereospecific reaction that offers a wide variety of BR with different microstructures and influences the fundamental properties of the rubber. Since the first successful polymerization of conjugated diene using the Ziegler–Natta–based catalyst (TiCl4 or TiCl3 with aluminum alkyls) in 1954, the research on producing synthetic rubber with an appropriate catalyst system has been accelerated. Subsequently, various research groups are actively engaged in designing active catalyst systems based on a suitable combination of transition metal complexes with alkyl-aluminum and successfully using them in BD polymerization. Although various scientific inventions have proven their significance for the production of high-quality BR, with the rising demands in improving the quality of the product, research on developing new catalyst systems with enhanced catalytic activity and high stereoselectivity is still in progress. The present review focuses on the synthesis of BR using various transition metal catalysts and discusses their microstructures. The catalysts based on new-generation metal complexes with phosphorus, nitrogen, and oxygen donor ligands (e.g., phosphines, imines, 1,10-phenanthroline, and imino-pyridines) have been introduced. The role that catalysts play in the production of BR with different microstructures (i.e., high-cis, high-trans or low-cis, low-trans polybutadiene) has also been described. The combination of catalyst (transition metal complex) and suitable co-catalyst (alkyl-aluminum) is the major factor influencing the reaction and microstructure of the resulting polymer. This report focuses on the effect of transition metal catalysts (i.e., lithium [Li], titanium [Ti], zirconium [Zr], iron [Fe], cobalt [Co], nickel [Ni], and neodymium [Nd]) on the activity and stereoselectivity of polymers such as 1,4-cis-, 1,4-trans-, and 1,2-vinyl-polybutadiene.


2017 ◽  
Vol 147 (22) ◽  
pp. 224106 ◽  
Author(s):  
M. Chandler Bennett ◽  
Cody A. Melton ◽  
Abdulgani Annaberdiyev ◽  
Guangming Wang ◽  
Luke Shulenburger ◽  
...  

2012 ◽  
Vol 1454 ◽  
pp. 137-148
Author(s):  
Hanns-Ulrich Habermeier

ABSTRACTHeterostructures composed of transition metal oxides with strong electron correlation offer a unique opportunity to design new artificial materials whose electrical, magnetic and optical properties can be manipulated by tailoring the occupation of the d-orbitals of the transition metal in the compound. This possibility is an implication of symmetry constraints at interfaces with the consequence of a reconstruction of the coupled charge-, spin-, and orbital states of the constituents and their interactions. Novel architectures can be constructed showing functions well beyond charge density manipulations determining the functionality of conventional semiconductor heterostructures. Success in this endeavor requires the mastering of technological prerequisites such as structurally as well as chemically controlled interface preparation down to atomic scales. Additionally, a fundamental understanding of the modifications of the electronic structure at the interface imposed by structural boundary conditions and consequently by the constituent’s orbital occupation is required. A path towards a new generation of electronic devices with multiple functionalities can thus be opened by exploiting the correlation driven interface phenomena. In this paper, the technological challenges and experimental realizations along this concept are described with an emphasis of growth techniques based on the pulsed laser deposition method. As a case study, results of investigations of YBa2Cu3O7/La2/3Ca1/3MnO3superlattices are compiled and the conclusions regarding the orbital manipulation at the interface are used to pave the way for orbital engineering of oxides with electronic structures similar to the cuprates in order to find novel ordered quantum states at the interfaces including magnetism and superconductivity.


Sign in / Sign up

Export Citation Format

Share Document