Characterization of pore structure for permeability prediction of cement based materials under frost attack - The fractal approach

Author(s):  
Dalia Bednarska ◽  
Alicja Wieczorek ◽  
Marcin Koniorczyk
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
M. A. Shi-Jia ◽  
L. I. N. Yuan-Jian ◽  
L. I. U. Jiang-Feng ◽  
Kundwa Marie Judith ◽  
Ishimwe Hubert ◽  
...  

The random existence of many irregular pore structures in geotechnical materials has a decisive influence on its permeability and other macroscopic properties. The analysis and characterization of the micropore structure of the material and its permeability are of great significance for geotechnical engineering. In this study, digital images with different magnifications were used to examine the pore structure and permeability of sandstone samples. The image processing method is used to obtain binary images, and then, the pore size distribution method is used to calculate the pore size distribution. Therefore, based on the Hagen-Poiseuille formula, we get the prediction value of material’s permeability and compare it with the value obtained from mercury intrusion porosimetry (MIP). It is found that different microscopic images with different magnification and various statistical methods of pore size have a specific influence on the characterization of pore structure and permeability prediction. The porosity of different magnifications is not the same, and the results obtained at higher magnifications are more consistent with the results obtained with MIP. With the increase of magnification, we can observe more pores in large sizes. The effect of CPSD (continuous pore size distribution) in pore size statistics is better than that of DPSD (discrete pore size distribution). In permeability prediction, the prediction result of higher magnification images are closer to the instrument test value, and the value of DPSD is more significant than that of CPSD. In future research, an appropriate method should be selected to obtain a reasonable prediction of the permeability of the target material.


1984 ◽  
Vol 49 (12) ◽  
pp. 2721-2738 ◽  
Author(s):  
Ondřej Kadlec ◽  
Jerzy Choma ◽  
Helena Jankowska ◽  
Andrzej Swiatkowski

This paper describes the algorithm of numerical evaluation of the parameters of the pore structure of adsorbents ( the micro, mezo and macropores). The structure of individual types of pores is described with the equation proposed by one of the present authors and giving the total distribution function of the pores with respect to their radii. The reliability of the suggested algorithm was verified in a number of calculations using a specially developed program. The results of the analysis and characterization of three different specimens of active carbon are shown as an example.


2014 ◽  
Vol 1712 ◽  
Author(s):  
Seyoon Yoon ◽  
Isabel Galan ◽  
Kemal Celik ◽  
Fredrik P. Glasser ◽  
Mohammed S. Imbabi

ABSTRACTCalcium sulfoaluminate (CSA) cements are being developed using a novel processing method having as its objective lowering specific CO2 emissions by ∼50% relative to a Portland cement benchmark. We need to be able to measure the properties of the products. Porosity and permeability measurements help define the engineering properties but their quantification is influenced by the choice of experimental protocols. In the present study we used ordinary Portland cement (PC) paste as a benchmark and hydrated ye’elimite, which is a main component of CSA cements, to understand its pore structure. We report on the use of synchrotron-sourced radiation for µCT (Computerized Tomography) and 3D image re-construction of the internal micro-pore structure of PC and ye’elimite-gypsum pastes. As a comparison, porosity and permeability measurements were traditionally obtained using Mercury Intrusion Porosimetry (MIP). The Mori-Tanaka method and the polynomial statistical model were used to analyze the effects of different 3-D micro-pore structures on mechanical properties. The results show that e micro-pore structures differ considerably between PC and ye’elimite pastes and their bulk modulus is significantly affected by the shapes of their micro-pore structures.


Sign in / Sign up

Export Citation Format

Share Document