scholarly journals A high resolution extreme ultraviolet spectrometer system optimized for harmonic spectroscopy and XUV beam analysis

2019 ◽  
Vol 90 (2) ◽  
pp. 023108 ◽  
Author(s):  
Martin Wünsche ◽  
Silvio Fuchs ◽  
Thomas Weber ◽  
Jan Nathanael ◽  
Johann J. Abel ◽  
...  
2020 ◽  
Vol 86 (3) ◽  
Author(s):  
S. Y. Dai ◽  
H. M. Zhang ◽  
B. Lyu ◽  
L. Wang ◽  
Y. Feng ◽  
...  

The modelling of edge carbon transport and emission on EAST tokamak under resonant magnetic perturbation (RMP) fields has been conducted with the three-dimensional edge transport code EMC3-EIRENE. The measured vertical distribution of CVI emission by the extreme ultraviolet spectrometer system for the perturbed case shows a reduction in the CVI emission by 20 % compared to the equilibrium case. The chord-integrated CVI emission can be reconstructed by EMC3-EIRENE modelling, which presents an increase in the CVI emission with RMP fields. The discrepancy between experiments and simulations has been investigated by parameter study to examine the sensitivity of the simulation results on the edge plasma conditions and the impurity perpendicular transport. It is found that the variation of edge plasma conditions for the equilibrium case cannot resolve the discrepancy in the CVI emission between simulations and measurements. The simulations with enhanced impurity perpendicular transport coefficient allows a reasonable agreement with the measured reduction of CVI emission.


2014 ◽  
Vol 85 (6) ◽  
pp. 063110 ◽  
Author(s):  
Zhan Shi ◽  
Ruifeng Zhao ◽  
Wenxian Li ◽  
Bingsheng Tu ◽  
Yang Yang ◽  
...  

2011 ◽  
Vol 82 (8) ◽  
pp. 083103 ◽  
Author(s):  
Hayato Ohashi ◽  
Junji Yatsurugi ◽  
Hiroyuki A. Sakaue ◽  
Nobuyuki Nakamura

1999 ◽  
Vol 9 (2) ◽  
pp. 3330-3333 ◽  
Author(s):  
S. Friedrich ◽  
J.B. Le Grand ◽  
L.J. Hiller ◽  
J. Kipp ◽  
M. Frank ◽  
...  

2000 ◽  
Vol 647 ◽  
Author(s):  
S.W.H. Eijt ◽  
C.V. Falub ◽  
A. van Veen ◽  
H. Schut ◽  
P.E. Mijnarends ◽  
...  

AbstractThe formation of nanovoids in Si(100) and MgO(100) by 3He ion implantation has been studied. Contrary to Si in which the voids are generally almost spherical, in MgO nearly perfectly rectangular nanosize voids are created. Recently, the 2D-ACAR setup at the Delft Positron Research Center has been coupled to the intense reactor-based variable-energy positron beam POSH. This allows a new method of monitoring thin layers containing nanovoids or defects by depth-selective high-resolution positron beam analysis. The 2D-ACAR spectra of Si with a buried layer of nanocavities reveal the presence of two additional components, the first related to para-positronium (p-Ps) formation in the nanovoids, and a second one most likely related to unsaturated Si-bonds at the internal surface of the voids. The positronium is present in excited kinetic states with an average energy of 0.3 eV. Refilling of the cavities by means of low dose 3He implantation (1×1014 cm−2) followed by annealing reduces the formation of Ps and the width of the Ps peak in the ACAR spectrum. This width reduction is due to collisions of Ps with He atoms in the voids. In MgO, p-Ps formed with an initial energy of ~3 eV shows a final average energy of 1.6 eV at annihilation due to collisions with the cavity walls. Possibilities of this new, non-destructive method of monitoring the sizes of cavities and the evolution of nanovoid layers will be discussed.


2018 ◽  
Vol 615 ◽  
pp. A47 ◽  
Author(s):  
Srividya Subramanian ◽  
Vinay L. Kashyap ◽  
Durgesh Tripathi ◽  
Maria S. Madjarska ◽  
John G. Doyle

We study the thermal structure and energetics of the point-like extreme ultraviolet (EUV) brightenings within a system of fan loops observed in the active region AR 11520. These brightenings were simultaneously observed on 2012 July 11 by the High-resolution Coronal (Hi-C) imager and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We identified 27 brightenings by automatically determining intensity enhancements in both Hi-C and AIA 193 Å light curves. The energetics of these brightenings were studied using the Differential Emission Measure (DEM) diagnostics. The DEM weighted temperatures of these transients are in the range log T(K) = 6.2−6.6 with radiative energies ≈1024−25 ergs and densities approximately equal to a few times 109 cm−3. To the best of our knowledge, these are the smallest brightenings in EUV ever detected. We used these results to determine the mechanism of energy loss in these brightenings. Our analysis reveals that the dominant mechanism of energy loss for all the identified brightenings is conduction rather than radiation.


2012 ◽  
Vol 101 (9) ◽  
pp. 093104 ◽  
Author(s):  
Li Wang ◽  
Bernd Terhalle ◽  
Vitaliy A. Guzenko ◽  
Alan Farhan ◽  
Mohamad Hojeij ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document